1.8 spi tft lcd arduino brands

The SparkFun TFT LCD Breakout is a versatile, colorful, and easy way to experiment with graphics or create a user interface for your project. With a 4-wire SPI interface and microSD card holder, you can use this breakout to easily add visual display/interface capabilities to a project as well as providing all the storage you might need for multimedia files.

To get started with this breakout, you will need an Arduino compatible microcontroller of your choice - we recommend something with extra RAM like the SparkFun Thing Plus. The breakout can be powered with either 5V or 3.3V. The microSD card holder is connected to the same SPI bus as the display which keeps the required pin count low and exists to relieve the burden from your microcontroller"s poor memory due to having to store hundreds of images of cats, or really whatever you want to keep there. We have also gone ahead and tricked out the SparkFun HyperDisplay library with a driver made especially for this breakout!

Out of the box, the SparkFun TFT LCD Breakout will come with a large backing PCB that makes it easy to securely mount the display in a project. If you need a more flexible solution you can remove the display module, snap off half the backing board, and then re-insert the display module. When this is done you"ll be left with the bare minimum frame around the display to more seamlessly integrate with your project.

1.8 spi tft lcd arduino brands

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735  colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.

The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.

The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.

Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:

We will use two libraries from Adafruit to help us easily communicate with the LCD. The libraries include the Adafruit GFX library which can be downloaded here and the Adafruit ST7735 Library which can be downloaded here.

We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.

The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.

The first thing, as usual, is to include the libraries to be used after which we declare the pins on the Arduino to which our LCD pins are connected to. We also make a slight change to the code setting reset pin as pin 8 and DC pin as pin 9 to match our schematics.

Next, we create an object of the library with the pins to which the LCD is connected on the Arduino as parameters. There are two options for this, feel free to choose the most preferred.

The complete code for this is available under the libraries example on the Arduino IDE. Don’t forget to change the DC and the RESET pin configuration in the code to match the schematics.

Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.

1.8 spi tft lcd arduino brands

This is a single-chip controller/driver for 262K-color, graphic type TFT-LCD.  It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface.

1.8 spi tft lcd arduino brands

The 1.8inch LCD uses the PH2.0 8PIN interface, which can be connected to the Raspberry Pi according to the above table: (Please connect according to the pin definition table. The color of the wiring in the picture is for reference only, and the actual color shall prevail.)

ST7735S is a 132*162 pixel LCD, and this product is a 128*160 pixel LCD, so some processing has been done on the display: the display starts from the second pixel in the horizontal direction, and the first pixel in the vertical direction. Start to display, so as to ensure that the position corresponding to the RAM in the LCD is consistent with the actual position when displayed.

The LCD supports 12-bit, 16-bit and 18-bit input color formats per pixel, namely RGB444, RGB565, RGB666 three color formats, this routine uses RGB565 color format, which is also a commonly used RGB format

Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

2. The module_init() function is automatically called in the INIT () initializer on the LCD, but the module_exit() function needs to be called by itself

Python has an image library PIL official library link, it do not need to write code from the logical layer like C, can directly call to the image library for image processing. The following will take 1.54inch LCD as an example, we provide a brief description for the demo.

The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is Font2, and the fill is the font color. You can directly make fill = "WHITE", because the regular color value is already defined Well, of course, you can also use fill = (128,255,128), the parentheses correspond to the values of the three RGB colors so that you can precisely control the color you want. The second sentence shows Micro Snow Electronics, using Font3, the font color is white.

The demo is developed based on the HAL library. Download the demo, find the STM32 program file directory, and open the LCD_demo.uvprojx in the STM32\STM32F103RBT6\MDK-ARM directory to check the program.

DEV_Config.cpp(.h): It is the hardware interface definition, which encapsulates the read and write pin levels, SPI transmission data, and pin initialization;

image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true color image array through Img2Lcd (downloadable in the development data).

The hardware interface is defined in the two files DEV_Config.cpp(.h), and functions such as read and write pin level, delay, and SPI transmission are encapsulated.

1.8 spi tft lcd arduino brands

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

1.8 spi tft lcd arduino brands

AllAnalog to Digital ConvertersArduino Starter KitsBatteriesBattery Charger ModuleBreadboardButton Key ModuleBuzzerCamera ModuleCapacitor &nbspCeramic Capacitors &nbspElectrolytic CapacitorsCases &nbspBattery HolderConnectors &nbspJumper Wires &nbspTact SwitchCooling FanDevelopment Boards &nbspArduino Development Boards &nbspRaspberry Development Boards &nbspSTM32 BoardsDiodesFingerprint SensorIntegrated Circuit &nbspAmplifier module &nbspCurrent Voltage Tester &nbspMicro SD Storage Expansion Board &nbspReal Time Clock Module &nbspRelay Module &nbspST TIP NXPInternet Of ThingsJoy StickLaser ModuleLEDMemory ModulesMP3 Decoding board &nbspMP3 Player ModuleMulti Coin Accetor/SelectorOptoelectronic Displays &nbspLCD ModulesPCB BoardsPCB Connectors &nbspFemale Single Row Pin HeaderPotentiometer &nbspPotentiometer Adjustable ResistorPotentiometer Knob CapPower AdaptorsPower Regulator Modules &nbspStep Down ModuleProgrammer module &nbspUSB To TTL Serial Adapter Module &nbspUSB to UART TTL ModuleProximity sensorPumpsResistor &nbspMetal Film Resistor &nbspPhotoresistor Light Dependent Resistor LDRRobotics & Aeronautics &nbspMotors and ActuatorsSensors &nbspCurrent Sensors &nbspDoor Window Sensor &nbspGas Sensor &nbspHumidity Sensor &nbspInfrared Light Sensor Module &nbspIR Infrared Obstacle Avoidance Sensor Module &nbspLoad Cell Weighing Sensor &nbspMicrophone Sound Sensor &nbspPIR Motion Sensor &nbspPulse Sensor Module &nbspRain Water Sensor Module &nbspReed Sensor Module &nbspSensor Shield Expansion Board &nbspShake Vibration Sensor Module &nbspSoil Moisture Sensor &nbspSpeed Sensor &nbspTemperature Sensor &nbspTouch Button Module &nbspTouch Sensor Module &nbspUltrasonic Distance Sensor &nbspVibration Sensor Module &nbspVoltage Sensor Module &nbspWater Level Sensor &nbspWeighing Sensor ModuleServo Shield ModuleSIGNAL FREQUENCY MODULESolar Devices &nbspSolar PanelSolenoid LockSolenoid ValveStepper Driver ChipTools &nbspDigital Multimeter &nbspMeasurement & Analysis Instruments &nbspSoldering ToolsTransistorsUncategorizedUsb Wi-fi AdapterVoice RecorderWater Flow SensorWireless Devices &nbspBluetooth & Infrared Devices &nbspESP32 Modules &nbspGPS/GSM/GPRS Devices &nbspIR Remote &nbspRFID/ RF/ WIFI Devices &nbspWireless Transceiver

1.8 spi tft lcd arduino brands

Recently, I had the idea to make a digital picture frame—one of these kinds which load images from SD cards and show each image for some time. I was remembering myself that I already own a small TFT display, the KMR-1.8 SPI, that works out of the box with an Arduino Uno. When I digged up my KMR-1.8 SPI, I realized that it has also an in-built SD card reader. Moreover, I looked up the Internet and found ready-to-use libraries for the in-built SD card reader as well as showing images on the TFT display. For these reasons, I thought making such an digital picture frame will turn out very easy.

When I started to implement my first lines of codes and started to connect my Arduino Uno to the KMR-1.8 SPI, I ran into two major problems. First, the colors of my image file did not match to the colors displayed by the KMR-1.8 (red and blue were interchanged). Second, my first prototypes stopped to work after about 5 minutes. The application started to freeze and showed the same image forever instead of displaying the next image after a chosen time.

There exists various versions of so-called “1.8 TFT displays” from different manufacturers. Not all of them are 100% compatible to each other. Therefore, if you own a TFT display and want to use my tutorial to make it work, please check if your TFT display really matches the version I used in this tutorial:

The source code relies on three header files (and libraries): SPI.h (Link), SD.h (Link) and TFT.h (Link). Please make sure that all of them are correctly installed before trying out my source code (In Arduino IDE: Tools -> Manage Libraries…).

In the introduction of this blog post, I mentioned that I came across two major problems: the colors red and blue were interchanged and my early Arduino programs started to freeze after some time. Luckily, I was able to fix all issues. The following source code works perfect on my setup. My “digital picture frame” does not require to be restarted after some time (my long-term test lasted about two weeks—and no restart was necessary).

I overcame the first problem by not using the default initialization method (“TFTscreen.begin();”) of the TFT library. Instead, I looked up whats inside the “begin”-method. I found a method called “initR” which has a parameter that allows to perform the initialization for a specific chip. Here, the parameter value “INITR_BLACKTAB” worked for me as the colors were then shown correctly. In addition, I call the method “setRotation” with parameter value “1” in order to be conform to the default initialization method. In the end, the code for the setting up the TFT library object looks like this:// ...

Important Note: The image files on the SD card must be stored as BMP with a resolution of 160x128 pixels (width x height). Moreover, long file names and special characters must be avoided.