marks on lcd screen manufacturer

Having black spots on a TV screen can be very confusing and annoying for most TV owners. If you just spotted a black spot on your TV screen, you are probably worried that you’ll need to replace the entire set. But this should not be the case, especially since you spent a handsome figure getting the best TV available.

Perhaps the most common cause of black spots is dirt and debris that have accumulated on the surface of the TV screen over time. If ignored, it will lead to black spots.

Most TV owners would consider sending their TVs back to their manufacturer when they spot a black spot, like sending your best Vizio TV back to Vizio. Unfortunately, this can be time-consuming and expensive, especially if you’ve invested in one of the highest-rated OLED TVs and/or large models like the top 70-inch TV. While most new TVs sold are smart TVs, you can still buy what is referred to now as “dumb TVs”. If you want a TV without apps and an internet connection, this is the TV for you. If that interests you, check out these top-rated dumb TVs. But keep in mind, unlike most new TVs, dumb TVs will usually be smaller like a 24-inch size TV for example. Regardless if the TV is smart or dumb it can develop black spots, however. Fortunately, fixing a black spot is relatively easy. As a result, we have compiled a guide on how to fix a black spot on a TV screen.

Black spots can be a pain, especially if you just bought a wide color gamut TV and are looking to have enjoyable weekends. Regardless of where the black spot is located on your TV screen, it will stand out like a sore thumb. It’ll be the first thing you spot when your TV screen lights up. Black spots on your TV screen are caused by debris, dead pixels, or stuck pixels. This can be especially annoying if you invested in the best anti-glare TV and depend on good visuals for a good TV experience.Dirt or Debris: Perhaps the most common cause of black spots. Dirt and debris accumulate on the surface of the TV screen over time, and if ignored, will lead to black spots. If you have the best outdoor TV, be sure to keep up with maintenance and regularly clean it.

Manufacturer defect: Black spots will appear due to a violation of the assembly. They don’t appear immediately and often lead to damage to the display matrix. Black spots caused by manufacturer defects are usually covered by a warranty.

Stuck Pixel: A stuck pixel is a pixel on the TV display that cannot change color. Display pixels are designed to change color depending on the image projected on display. When the color doesn’t change, it’s called a stuck pixel.

Dead pixel: It’s pretty different from a stuck pixel but often gets confused for one. While a stuck pixel will light up when the TV is turned on but does not change color, a dead pixel doesn’t light up at all. This is because all of their sub-pixels are turned off permanently, and since they don’t light up, they look like black spots on the TV screen. You can read our article on how to fix dead pixels on a TV to learn more about dead pixels.

Fixing black spots on your TV screen is quite simple.First, turn off your television and unplug it from the power source for a few hours. Sometimes, turning off the power on your TV will force the stuck pixel to become unstuck when you finally plug your TV back to the mains.

Next, verify that the black spot issues aren’t caused by any devices plugged into your TV, like a console or cable box. Remove all cables connecting your TV to components, and then plug them back in. Sometimes, loose connections cause distorted images that look like dead pixels.

If a black spot is still visible, contact your manufacturer or repair shop for repair service. Depending on the time and nature of the black spot, The TV manufacturer might cover the repair under warranty. You can also try the clouding LED TV fix, which solves the black spot problem that is common among new TVs but often disappears as time goes by.

Regardless of where the black spot is located on your TV screen, it will stand out like a sore thumb. It’ll be the first thing you spot when your TV screen lights up.

While a stuck pixel will light up when the TV is turned on but does not change color, a dead pixel doesn’t light up at all. This is because all of their sub-pixels are turned off permanently, and since they don’t light up, they look like black spots on the TV screen.

Perhaps the most common cause of black spots is dirt and debris that have accumulated on the surface of the TV screen over time. If ignored, it will lead to black spots.

marks on lcd screen manufacturer

The most annoying thing about laptop damage is having a problem with its screen. It is not enough to have the laptop in good working condition. Rather, it is best if the laptop looks perfect on the outside too.

Some laptop problems do not need an expert to fix, you can do it as a DIY project. Find out how to remove pressure marks on LCD screens as explained in this article.

Pressure marks, despite how nasty they can be, unfortunately, have no specific fixing techniques. You might be lucky if you manage to remove the damage without interfering with your laptop’s part.

Liquid crystal displayis a technology used in making many electronics’ screens. Mostly found on monitors, TV screens, and even phone screens, the technology creates images by illuminating light through multiple liquid crystals.

Pressure application is the major cause of damage to these screens. This is because these screens are very sensitive. The liquid crystal, in the LCD screen, is fixed between two glass sheets.

After purchasing a good LCD screen, usually, you feel so contented; not knowing with time some problems may arise. The most common issues experienced are:

When you turn on the monitor, you may realize sudden flashes are appearing. On most occasions, the major reason for this to happen is having a loose video cable.

Tightening the cable will resolve this problem perfectly. Make sure you’re not using a cable that is faulty. Suppose the cable is damaged, buy a new one to replace it.

The mark does not damage your screen, although it can be frustrating seeing it there. There is software to solve this. They work by forcing the area with the dead pixel to experience a rapid change of colors.

This is a layer of a crushed crystal, found between two glasses that makes the screen. They form due to physical pressure exerted on the screen. The pressure forces the crystal to lose its solid properties.

Therefore, it makes the computer not manipulate the crystals to filter the backlight. This at times even pushes the crystals out of their fixed position. They either tend to rotate or get twisted.

To prevent it, you will require less pressing of the screen. Avoid unnecessary holding of the screen, not unless it’s a touch screen that is designed to withstand pressure.

This should also apply when you are wiping the screen or other sensitive laptop parts like the touchpad. Ensure you do it lightly and gently. While traveling, ensure your laptop is closed properly without having any object that will exert pressure between the keyboard and screen.

Pressure marks are a result of physical force that occurs when a laptop is mishandled, example when you bring the laptop to a plane. Therefore it will require physical fixing attention.

Physically fixing the screen also is not a 100 percent guarantee of solving the problem. It may even result in worse damages since it will require opening the laptop parts.

If the spot does not obstruct you from working well, then you can ignore it. It will help you save on the cost of getting a new laptop after an unsuccessful attempt to repair the problem.

marks on lcd screen manufacturer

Any TV with a liquid crystal coating, even the most expensive and proven as a reliable technology, may be malfunctioning or quickly deteriorate if used improperly. In this article, we will try to figure it out and find out what needs to be done if a dark spot appears on the LCD TV screen.

Such “blots” and dots are often first slightly visible and invisible, and then grow and interfere with viewing TV shows, distorting or closing the panel. In this section, we will try to understand the causes of the malfunction.

Often a dark spot formed on the liquid crystal coating indicates a malfunction of the most important part - the matrix. Basically, these are factory defects.

The defect appeared at the factory itself. If you purchased an LCD device and found a dark growing spot on it, immediately bring the device back to the store, provided that the warranty has not expired.

The appearance of a dark unpleasant spot on the plasma TV screen indicates a problem with the blocks themselves, the image being edited. Most likely, these blocks have already worn out. Also, in rare cases, the device manufacturers themselves are to blame.

Important! During operation, scratches can form on any item, and the TV screen is no exception. In our separate review, we described in detail howremove screen scratches.

Such “blots” often appear on such a model; the most common cause is the shedding of the phosphor deposited on the inside of the monitor. It also provides viewing of TV channels.

This defect occurs as a result of shock, pressure, falling of the picture tube or its wear. Here only the replacement of the tube itself can help, but it costs a lot of money. It happens that it is impossible to change it. Only buying a new TV will help.

Important! Remember that if the warranty for the equipment has not yet been issued and may still be valid for some time, then immediately contact a service center in your city and hand over the equipment according to the warranty sheet.

If the warranty is over, try to write a letter with claims to the manufacturers. In extremely rare cases, in order not to lose their reputation, factories can replace faulty equipment.

Important! For the future: for the warranty period and the manufacturer’s obligations to work for sure, buy the equipment of reputable companies. These are mainly brands such as SAMSUNG, LG, SONY, PHILIPS.

Important! Some owners of Smart TV have problems connecting the Internet to the TV. Our site of useful tips will help you solve this problem, read the special post “How to connect the Internet to Smart TV?”

It also happens that for no reason color stripes and “blots” appear on the monitor, which terribly distort the image. Such a story only happens with old picture tubes.

When you witness the appearance of such spots on the TV screen, do not rush to run to the store, take the equipment or write angry letters to the manufacturers, because such a problem is very simple to fix yourself.

So, we figured out the reasons, but what to do to make the strange glow disappear? It’s not necessary to call the master to the house, the whole problem can be eliminated independently:

The most popular and easiest way is to unplug the appliance for several hours and turn it on again. If the problem persists, try again. For prevention, this procedure can be carried out once a month.

If the method presented above did not work, most likely your posistor burned out. In this case, you need to replace the thermistor with a working one, but this is not an easy task. We recommend involving a master in this, so as not to break through your technique.

In the proposed article, we figured out the causes and methods of eliminating various spots on TV screens of any shape and size. Remember that even a well-proven technique requires special vigilance.

marks on lcd screen manufacturer

Responsible for performing installations and repairs (motors, starters, fuses, electrical power to machine etc.) for industrial equipment and machines in order to support the achievement of Nelson-Miller’s business goals and objectives:

• Perform highly diversified duties to install and maintain electrical apparatus on production machines and any other facility equipment (Screen Print, Punch Press, Steel Rule Die, Automated Machines, Turret, Laser Cutting Machines, etc.).

• Provide electrical emergency/unscheduled diagnostics, repairs of production equipment during production and performs scheduled electrical maintenance repairs of production equipment during machine service.

marks on lcd screen manufacturer

I have replaced a iphone 6 screen and the frame. After putting everything togheter i notice this mark on the LCD. The screen is a little stressed. Did i do this damage when repairing the device or is there something wrong with the screen? I have repaired a new screen today, and i notice the same thing, but in very small amount.

marks on lcd screen manufacturer

There are a number of screen manufacturers. The following link should help. However if you do not want to pull the housing off the screen to find out the manufacturer there is one other way that should work. Download SiSoftware Sandra Lite. It can tell you a great deal about your system. Click on Display and Video Adapters. Then select Monitor Panel from the pulldown menu. It will display the manufacturer. Which, in the case of my Inspiron 5575, is BOE.

marks on lcd screen manufacturer

Screens can scratch easily, and even paper towels and tissues contain fibers that can do damage. “Your best bet is to use a soft, anti-static microfiber cloth—the kind used to clean eyeglasses and camera lenses—and wipe in a circular motion,” says John Walsh, who cleans more than 250 TVs a year in his role as a CR photographer. (Some TV manufacturers will include a cloth for this purpose.) “Gently wipe the screen with a dry cloth to remove dust and other debris, but don’t press too hard,” he says.

You may also want to wipe down the TV’s cabinet, and make sure dust isn’t clogging the vents that help dissipate heat. If the TV is on a stand and not tethered to the wall, Walsh suggests cleaning with one hand while supporting the TV with the other to prevent the set from tipping over. However, CR strongly recommends anchoring all stand-mounted TVs using anti-tipping straps designed for this purpose.

If there are hard-to-remove stains, you can dampen the cloth slightly with distilled water and gently clean the screen. Don’t spray water directly onto the screen; that could cause a shock or component failure if water seeps into the inner workings of the set.

For the most stubborn stains, you can try using a solution of very mild dish soap highly diluted with water, once again applied to the cloth and not to the TV itself. (As a guideline, Panasonic used to recommend a 100:1 ratio of water to soap.) LCD screens, in particular, are very sensitive to pressure and can scratch easily, so don’t press hard.

marks on lcd screen manufacturer

How much DSE you see depends partly on the model you purchased. Pricier models generally feature improved better uniformity, mostly because manufacturers use more rigorous quality standards for their high-end products. But, no matter how much you spend, uniformity is unique to every individual unit, meaning you don"t really know how much DSE you"re getting until you see it in person.

Is your obsessive side getting twitchy yet? Before we discuss upping your Xanax prescription, let"s review how the DSE demon begins its possession of your beloved screen.

Still, DSE may afflict cheaper versions, particularly if the anti-reflective coating on the glass that overlays the screen is of low quality or poorly applied. Furthermore, as the display ages, the phosphors in the screen may begin to wear out or malfunction, all of which can contribute to less uniform images, which is often apparent particular in scenes with fast panning shots.

In LCD and LED TVs, DSE is typically a bigger issue, one that"s due to the way these units are illuminated. Before we proceed, it"s worth mentioning that although marketing-speak often treats LED and LCD TVs as completely different technologies, they"re not different beasts.

LED units could be more accurately described as "LED-backlit LCD televisions," but salespeople and consumers alike are too lazy to utter that tongue-wearying phrase while haggling in a big-box store. What"s important to realize is that both categories rely on LCDs (liquid crystal displays), which act as shutters that either block light or allow it to pass, depending on the image that"s being rendered on the screen.

There are a variety of factors that affect LCD quality, notably illumination source. Older LCD TVs, for example, used multiple cold cathode fluorescent lamps (CCFL) to light LCDs from the rear. They provide generally smooth and even illumination, but they make the final product rather bulky.

More modern TVs rely on LEDs (light-emitting diodes) as a light source. Some models have what"s called full-array backlighting, in which the LEDs are stationed in regular intervals behind the screen, creating even lighting and excellent picture quality.

Other models incorporate what"s called edge lighting, which positions the LEDs along the edges of the screen. In general, the overall picture quality isn"t quite as good as a backlit screen, but manufacturers still use it because it allows them to build substantially slimmer TVs.

If you"ve ever pressed a little too hard on your smartphone or computer screen, you"ve likely witnessed a bit of discoloration, clear evidence of how sensitive LCDs are to physical pressure. Now, picture a huge manufacturing facility that cranks out thousands of these units per week. It"s easy to see how a bit of mishandling could alter the screen"s consistency.

The same goes for shipping. Some units travel long distances in cargo boxes, and then take bouncy rides in your car to their final resting place on your living room wall. That"s a lot of opportunities for tiny mishaps to affect LCD uniformity.

marks on lcd screen manufacturer

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.

LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.

LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:

Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.

The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.IEEE History Center.Peter J. Wild, can be found at the Engineering and Technology History Wiki.

In 1888,Friedrich Reinitzer (1858–1927) discovered the liquid crystalline nature of cholesterol extracted from carrots (that is, two melting points and generation of colors) and published his findings at a meeting of the Vienna Chemical Society on May 3, 1888 (F. Reinitzer: Beiträge zur Kenntniss des Cholesterins, Monatshefte für Chemie (Wien) 9, 421–441 (1888)).Otto Lehmann published his work "Flüssige Kristalle" (Liquid Crystals). In 1911, Charles Mauguin first experimented with liquid crystals confined between plates in thin layers.

In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.

The MOSFET (metal-oxide-semiconductor field-effect transistor) was invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959, and presented in 1960.Paul K. Weimer at RCA developed the thin-film transistor (TFT) in 1962.

In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the George H. Heilmeier was inducted in the National Inventors Hall of FameIEEE Milestone.

In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.

On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.

In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.

In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,

In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,

The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.

In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.

Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,

In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.

In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.

Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.

CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.

EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.

WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.

RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.

Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.

Mini-LED: Backlighting with Mini-LEDs can support over a thousand of Full-area Local Area Dimming (FLAD) zones. This allows deeper blacks and higher contrast ratio.MicroLED.)

Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).

The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),

Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has become the dominant display technology for products such as televisions, desktop monitors, notebooks, tablets, smartphones and mobile phones. Although competing OLED technology is pushed to the market, such OLED displays do not feature the HDR capabilities like LCDs in combination with 2D LED backlight technologies have, reason why the annual market of such LCD-based products is still growing faster (in volume) than OLED-based products while the efficiency of LCDs (and products like portable computers, mobile phones and televisions) may even be further improved by preventing the light to be absorbed in the colour filters of the LCD.

A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.

A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.

The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.

Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.

A comparison between a blank passive-matrix display (top) and a blank active-matrix display (bottom). A passive-matrix display can be identified when the blank background is more grey in appearance than the crisper active-matrix display, fog appears on all edges of the screen, and while pictures appear to be fading on the screen.

Displays having a passive-matrix structure are employing Crosstalk between activated and non-activated pixels has to be handled properly by keeping the RMS voltage of non-activated pixels below the threshold voltage as discovered by Peter J. Wild in 1972,

STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.

Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.

High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.

Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.

Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.

Twisted nematic displays contain liquid crystals that twist and untwist at varying degrees to allow light to pass through. When no voltage is applied to a TN liquid crystal cell, polarized light passes through the 90-degrees twisted LC layer. In proportion to the voltage applied, the liquid crystals untwist changing the polarization and blocking the light"s path. By properly adjusting the level of the voltage almost any gray level or transmission can be achieved.

In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.

In 2015 LG Display announced the implementation of a new technology called M+ which is the addition of white subpixel along with the regular RGB dots in their IPS panel technology.

Most of the new M+ technology was employed on 4K TV sets which led to a controversy after tests showed that the addition of a white sub pixel replacing the traditional RGB structure would reduce the resolution by around 25%. This means that a 4K TV cannot display the full UHD TV standard. The media and internet users later called this "RGBW" TVs because of the white sub pixel. Although LG Display has developed this technology for use in notebook display, outdoor and smartphones, it became more popular in the TV market because the announced 4K UHD resolution but still being incapable of achieving true UHD resolution defined by the CTA as 3840x2160 active pixels with 8-bit color. This negatively impacts the rendering of text, making it a bit fuzzier, which is especially noticeable when a TV is used as a PC monitor.

In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.

This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).

Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.

Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.

Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.

Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.

Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.

The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.

In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.

Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.

Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.

Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.

Color performance: There are multiple terms to describe different aspects of color performance of a display. Color gamut is the range of colors that can be displayed, and color depth, which is the fineness with which the color range is divided. Color gamut is a relatively straight forward feature, but it is rarely discussed in marketing materials except at the professional level. Having a color range that exceeds the content being shown on the screen has no benefits, so displays are only made to perform within or below the range of a certain specification.white point and gamma correction, which describe what color white is and how the other colors are displayed relative to white.

Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.

Low power consumption. Depending on the set display brightness and content being displayed, the older CCFT backlit models typically use less than half of the power a CRT monitor of the same size viewing area would use, and the modern LED backlit models typically use 10–25% of the power a CRT monitor would use.

Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).

No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.

As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.

Limited viewing angle in some older or cheaper monitors, causing color, saturation, contrast and brightness to vary with user position, even within the intended viewing angle.

Uneven backlighting in some monitors (more common in IPS-types and older TNs), causing brightness distortion, especially toward the edges ("backlight bleed").

Display motion blur on moving objects caused by slow response times (>8 ms) and eye-tracking on a sample-and-hold display, unless a strobing backlight is used. However, this strobing can cause eye strain, as is noted next:

As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.

Only one native resolution. Displaying any other resolution either requires a video scaler, causing blurriness and jagged edges, or running the display at native resolution using 1:1 pixel mapping, causing the image either not to fill the screen (letterboxed display), or to run off the lower or right edges of the screen.

Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.

Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.

Dead or stuck pixels may occur during manufacturing or after a period of use. A stuck pixel will glow with color even on an all-black screen, while a dead one will always remain black.

In a constant-on situation, thermalization may occur in case of bad thermal management, in which part of the screen has overheated and looks discolored compared to the rest of the screen.

Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.

Several different families of liquid crystals are used in liquid crystal displays. The molecules used have to be anisotropic, and to exhibit mutual attraction. Polarizable rod-shaped molecules (biphenyls, terphenyls, etc.) are common. A common form is a pair of aromatic benzene rings, with a nonpolar moiety (pentyl, heptyl, octyl, or alkyl oxy group) on one end and polar (nitrile, halogen) on the other. Sometimes the benzene rings are separated with an acetylene group, ethylene, CH=N, CH=NO, N=N, N=NO, or ester group. In practice, eutectic mixtures of several chemicals are used, to achieve wider temperature operating range (−10..+60 °C for low-end and −20..+100 °C for high-performance displays). For example, the E7 mixture is composed of three biphenyls and one terphenyl: 39 wt.% of 4"-pentyl[1,1"-biphenyl]-4-carbonitrile (nematic range 24..35 °C), 36 wt.% of 4"-heptyl[1,1"-biphenyl]-4-carbonitrile (nematic range 30..43 °C), 16 wt.% of 4"-octoxy[1,1"-biphenyl]-4-carbonitrile (nematic range 54..80 °C), and 9 wt.% of 4-pentyl[1,1":4",1-terphenyl]-4-carbonitrile (nematic range 131..240 °C).

The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".

Critics of the report point out that it assumes that all of the NF3 produced would be released to the atmosphere. In reality, the vast majority of NF3 is broken down during the cleaning processes; two earlier studies found that only 2 to 3% of the gas escapes destruction after its use.3"s effects with what it replaced, perfluorocarbon, another powerful greenhouse gas, of which anywhere from 30 to 70% escapes to the atmosphere in typical use.

Castellano, Joseph A (2005). Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific Publishing. ISBN 978-981-238-956-5.

Rong-Jer Lee; Jr-Cheng Fan; Tzong-Shing Cheng; Jung-Lung Wu (March 10, 1999). "Pigment-dispersed color resist with high resolution for advanced color filter application". Proceedings of 5th Asian Symposium on Information Display. ASID "99 (IEEE Cat. No.99EX291). pp. 359–363. doi:10.1109/ASID.1999.762781. ISBN 957-97347-9-8. S2CID 137460486 – via IEEE Xplore.

Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry, Joseph A. Castellano, 2005 World Scientific Publishing Co. Pte. Ltd., ISBN 981-238-956-3.

Heilmeier, George; Castellano, Joseph; Zanoni, Louis (1969). "Guest-Host Interactions in Nematic Liquid Crystals". Molecular Crystals and Liquid Crystals. 8: 293–304. doi:10.1080/15421406908084910.

Heilmeier, G. H.; Zanoni, L. A.; Barton, L. A. (1968). "Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals". Proc. IEEE. 56 (7): 1162–1171. doi:1