auo va-type lcd panel factory

In response to gamers" and professionals" pursuit of the ultimate image quality, AUO has continually developed breakthrough products featuring high refresh rate, high resolution, and our exclusive Adaptive mini LED (AmLED) display technology that brings clarity to dark details, creating smooth and life-like visual feasts. Panels designed with optimal curvature offer an immersive display experience. Our Advanced Reflectionless Technology (A.R.T.) and low blue light technology provide a natural and comfortable viewing experience without hurting users’ eyes after extended periods.

In response to gamers" and professionals" pursuit of the ultimate image quality, AUO has continually developed breakthrough products featuring high refresh rate, high resolution, and our exclusive Adaptive mini LED (AmLED) display technology that brings clarity to dark details, creating smooth and life-like visual feasts. Panels designed with optimal curvature offer an immersive display experience. Our Advanced Reflectionless Technology (A.R.T.) and low blue light technology provide a natural and comfortable viewing experience without hurting users’ eyes after extended periods.

auo va-type lcd panel factory

Back in 2016, to determine if the TV panel lottery makes a significant difference, we bought three different sizes of the Samsung J6300 with panels from different manufacturers: a 50" (version DH02), a 55" (version TH01), and a 60" (version MS01). We then tested them with the same series of tests we use in all of our reviews to see if the differences were notable.

Our Samsung 50" J6300 is a DH02 version, which means the panel is made by AU Optronics. Our 55" has an original TH01 Samsung panel. The panel in our 60" was made by Sharp, and its version is MS01.

Upon testing, we found that each panel has a different contrast ratio. The 50" AUO (DH02) has the best contrast, at 4452:1, followed by the 60" Sharp (MS01) at 4015:1. The Samsung 55" panel had the lowest contrast of the three: 3707:1.

These results aren"t really surprising. All these LCD panels are VA panels, which usually means a contrast between 3000:1 and 5000:1. The Samsung panel was quite low in that range, leaving room for other panels to beat it.

The motion blur results are really interesting. The response time of the 55" TH01 Samsung panel is around double that of the Sharp and AUO panels. This is even consistent across all 12 transitions that we measured.

For our measurements, a difference in response time of 10 ms starts to be noticeable. All three are within this range, so the difference isn"t very noticeable to the naked eye, and the Samsung panel still performs better than most other TVs released around the same time.

We also got different input lag measurements on each panel. This has less to do with software, which is the same across each panel, and more to do with the different response times of the panels (as illustrated in the motion blur section). To measure input lag, we use the Leo Bodnar tool, which flashes a white square on the screen and measures the delay between the signal sent and the light sensor detecting white. Therefore, the tool"s input lag measurement includes the 0% to 100% response time of the pixel transition. If you look at the 0% to 100% transitions that we measured, you will see that the 55" takes about 10 ms longer to transition from black to white.

All three have bad viewing angles, as expected for VA panels. If you watch TV at an angle, most likely none of these TVs will satisfy you. The picture quality degrades at about 20 degrees from the side. The 60" Sharp panel is worse than the other ones though. In the video, you can see the right side degrading sooner than the other panels.

It"s unfortunate that manufacturers sometimes vary the source of their panels and that consumers don"t have a way of knowing which one they"re buying. Overall though, at least in the units we tested, the panel lottery isn"t something to worry about. While there are differences, the differences aren"t big and an original Samsung panel isn"t necessarily better than an outsourced one. It"s also fairly safe to say that the same can be said of other brands. All panels have minute variations, but most should perform within the margin of error for each model.

auo va-type lcd panel factory

While there are many different manufacturers of LCD monitors, the panels themselves are actually only manufactured by a relatively small selection of companies. The three main manufacturers tend to be Samsung, AU Optronics and LG.Display (previously LG.Philips), but there are also a range of other companies like Innolux and CPT which are used widely in the market. Below is a database of all the current panel modules manufactured in each size. These show the module number along with important information including panel technology and a detailed spec. This should provide a detailed list of panels used, and can give you some insight into what is used in any given LCD display.

Note:These are taken from manufacturer product documentation and panel resource websites. Specs are up to date to the best of our knowledge, and new panels will be added as and when they are produced. Where gaps are present, the detail is unknown or not listed in documentation. The colour depth specs are taken from the manufacturer, and so where they specify FRC and 8-bit etc, this is their listing. Absence of such in the table below does not necessarily mean they aren’t using FRC etc, just that this is how the manufacturer lists the spec on their site.

auo va-type lcd panel factory

We have some updates from AU Optronics about their panel development plans which is always interesting to see. Our last update was Oct 2020. This is AUO as a panel manufacturer, as opposed to any specific monitor/display manufacturer, but it gives an indication of where monitors are likely to go in the future by looking ahead at the panel production plans. AUO make a large portion of the IPS-type panels (their ‘AHVA’ technology) in the market which is always of interest along with a range of interesting TN Film options. Please keep in mind that the production dates are not set in stone and may change, and there is then also a lag of several months before a panel is produced, then used in a display and launched to market. We will update our panel parts database with all the new information we have as well as best we can.

AU Optronics plan to push this in the coming years, with listings now of 1080p @ 480Hz, 1440p @ 360Hz and UHD (4K) @ 240Hz!The 1440p 360Hz option looks like it will be the first to go in to production sometime in 2021, with the others planned for 2022 sometime. No details on panel sized or other specs at the moment, only that these are the plans to drive refresh rates.

An interesting new addition in our last update was the M315QVR02.0. This is 31.5″ in size and is a VA technology panel with a steep 1000R curvature. It offers a 3840 x 2160 (“4K”) resolution along with a 144Hz refresh rate. Production was not planned until Q2 2021 at the time although this seems to have been brought forward slightly and should now be in production and expected to be available around Q3 2021.

While not listed last time for some reason, an alternative panel had the same specs but a less steep 1500R curvature instead. This has now re-appeared and again should be in production and expected to be available around Q3 2021.

There are also a quite a few other high refresh rate Curved VA panels of note. The focus from AUO here seems to be with a range of curvature options, including a steep 1000R to match recent Samsung VA panel developments. New planned 240Hz VA panels look particularly interesting, if response times are sufficient to keep up. Samsung have done a great job enhancing their response times on recently tested 240Hz VA panels from their range, finally clearing up the dreaded black smearing and making panels that can actually keep up with the frame rate (e.g. Samsung Odyssey G7screens). Let’s hope AUO can do the same with their new 240Hz options.

No sooner have these screens started to finally appear, do we have news from AUO that they are looking to boost that refresh rate a little up to 160Hz in the next generation of these 4K panels. These are still in planning phase with a tentative Q3/Q4 2021 date listed for now, but we’d expect this to slip a bit.

AUO have various panels planned with FALD backlights and Mini LED backlights (even more zones) for excellent HDR performance on an LCD panel. Some also have high refresh rates included:

M320QAN02.7– 32″ in size with a 576 zone LED backlight (AUO refer to this as Mini LED, although it’s a bit more like FALD options we’ve seen to date given the more limited number of zones). This panel has a 3840 x 2160 resolution, 60Hz refresh rate only, wide gamut with 99% Adobe RGB coverage, 8-bit colour depth, 600 cd/m2 brightness, 1000 cd/m2 peak brightness for HDR 1000. Originally expected to go in to production in Dec 2020 which slipped a bit but should be in production now since May 2021.

An additional 32″ sized panel with a 576 zone LED backlight is also now listed (M320QAN02.8) but this time with an expected 160Hz refresh rate. Again with 99% Adobe RGB gamut and HDR 1000 support. This one is in planning phase only, but listed for now at Q3 2021.

Another similar panel (M320QAN02.9) is listed with the same 4K at 160Hz specs but an HDR 600 capability only (but still with a 576 zone Mini LED backlight). This one is again in planning phase and penciled in for Q3 2021 at the moment.

Most exciting perhaps is a new 32″ panel (M320QAN02.A) that is currently in development with a 2304 zone Mini LED backlight and high 160Hz refresh rate. This is listed with 99% Adobe RGB gamut and HDR 1000 support again, and expected to be in production around August 2021.

M270QAN02.6 – 27″ in size with a 576 zone LED backlight. This panel has a 3840 x 2160 resolution, high 144Hz refresh rate, wide gamut with 99% Adobe RGB coverage, 8-bit colour depth, 600 cd/m2 brightness, 1000 cd/m2 peak brightness for HDR. Originally expected to go in to production in Dec 2020 but now listed for Q3 2021.

There’s not very much information listed for this at the moment, but AUO are also developing now a 24.5″ sized TN Film panel with a 360Hz native refresh rate. So far the only 360Hz panels released to market have been by AUO with their IPS-type technology, as featured in screens like the Asus ROG Swift PG259QN we tested last Sept 2020. Some gamers still prefer TN Film panels for additional snappiness and for competitive gaming so it will be interesting to see what AUO can manage in this sector too.

Another newly announced panel that looks interesting is the M315QVN02.0. This is flat format 31.5″ sized panel, and offers a 3840 x 2160 “4K” resolution combined with a 144Hz refresh rate. This is a VA technology panel though, unlike the wide range of IPS technology panels already announced from various manufacturers in this kind of size range (31.5 – 32″). So this is one of the first ~32″ sized panels with 4K @144Hz but with VA technology being used. Other specs listed include HDR 600 support and a 90% DCI-P3 colour gamut. It’s expected to be available quite soon actually with production supposedly under way since July 2021.

The 34″ size is not one that AUO has previously invested in, having concentrated their efforts in the 35″ space, and leaving 34″ to Samsung (VA) and LG.Display (IPS) until now. AUO now have several new panels in production which are 34″ in size, offering a 21:9 ultrawide aspect ratio and a 3440 x 1440 resolution. There are 4 panel variants planned:

The other two have a steeper 1000R curvature to rival what Samsung are doing at the moment with their VA panels. Again there is a 100Hz version (M340QVR01.5) and a 165Hz version (M340QVR01.6). Both slipped back from Jan/Feb 2021 slightly to March 2021 but should now be in production.

auo va-type lcd panel factory

Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.

Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:

Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:

MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:

LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.

"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.

"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.

"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.

Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.

"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.

auo va-type lcd panel factory

In order to choose the best monitor for your needs, it is very important to distinguish what kind of LCD panel interface type is in the monitor you’re looking at. The most common panels used nowadays are;

One of the types of panels that you will find in a computer monitor is a TN Panel. This stands for Twisted Nematic, and this particular type of LCD panel is generally the cheapest. They are the cheapest to manufacture among all LCD technologies, so they are the most commonly used in budget monitors.

If you are looking to game online, you will need a monitor with a higher refresh rate like that offered by a TN panel. Refresh rates are measured in Hertz (Hz), which defines how many times per second your screen can display new images.

The typical response time for a TN panel is less than 5 ms which is much faster than the 6 or 8 ms response time that other LCD displays have, such as vertical alignment or VA.

The biggest downside with these panels is often their viewing angles. On a TN panel, the viewing angles aren"t very good, and depending on how far off-center you are, the picture can begin to lose color and contrast.

TN panels also don"t support as wide a range of resolutions as IPS. This LCD monitor panel type has a poor contrast ratio when compared with other technologies such as IPS and VA. This results in an inability to display deep blacks and bright whites at the same time.

TN panels are manufactured by Samsung, LG, AUO, Chi-Mei, Chunghwa Picture Tubes, Hannstar Display Corporation, Sharp Corporation, CMI, Innolux, J-Tech Digital Imaging Co. Ltd, AU Optronics Corporation, etc.

A TN panel is a type of liquid crystal display (LCD) used in most LCD monitors and laptops. TN panels were the workhorse of the 1990s and early 2000s, but they were eventually replaced by their more-expensive cousins, the in-plane switching (IPS) and vertical alignment (VA) panels.

TN computer panels work by using two polarized filters, vertical and horizontal, to control the light that passes through them. The filters are arranged so that when the electrical current is off, light cannot pass through. When it"s on, it hits the twisted crystals to produce colors. The active layer is twisted to allow the light to pass through it, and this twist is controlled by electrical fields applied to the liquid crystal material.

It is worth noting that A TN panel is made up of millions of pixels, each pixel being red, green, or blue in color. The light from each pixel can be either on or off, so black is created when all the pixels are off and white when all are on. When all three colors are combined, any color can be produced. This arrangement is called RGB (red-green-blue).

A TN panel uses twisted nematic liquid crystals to form images. While not as desirable as other technologies, it does have several benefits worth considering when making a purchasing decision.They are mostly found in budget LCDs, as they are cheaper to manufacture and therefore sell for less.

TN panels have excellent response rates and refresh rates, typically 1 - 2 milliseconds and 50 – 75 Hz, respectively. This makes them ideal for high-end gaming

TN is the oldest and most common type of LCD panel, and it"s also the cheapest to produce. TN panels were the first panels to be introduced to the market, but they"re no longer as popular as they used to be. This is because TN panels have several downsides:The main disadvantage of TN panels is limited viewing angles, which can be extremely limiting in some cases. If you"re sitting straight in front of the monitor, everything is fine, but if you move to the side, then all colors shift and get distorted. That can be extremely annoying for graphic designers or architectswho work with color palettes, photographers who need exact color matching, etc. (see also

TN panels typically have lower contrast ratios than IPS displays do, so they don"t look as rich in color or dark black. So TN panels are usually not suitable for professional applications such as color-critical photo editingand graphic design.

Many gamers prefer TN panels because they provide a very fast response time and higher refresh rates. You can also find some with a refresh rate of 240Hz, which is even better.The Asus VG248QE is a 24-inch LCD display with a 1920 x 1080 resolution and a 1ms response time. It uses a TN panel, so don"t expect much in terms of viewing angle or color reproduction accuracy compared to an IPS display. But if you"re looking for a good 144Hz monitor, choose this one.

ViewSonic VX2458-MHD. It has a TN panel. The refresh rate of this monitor is 72Hz, which is standard. The response time of this monitor is 1ms. It also comes with 4 USB 3.0 ports, which is great if you plan on hooking up multiple devices, which is frequently used when trading. If you have a setup like that, you will also want to look at bezel less monitors, or frameless monitors, for your needs.

Another common type of panel is a VA panel. This stands for Vertical Alignment and is a step above a TN panel in terms of quality. Its name comes from the fact that light emitted from the screen"s backlight (see also LED monitors) is aligned vertically rather than being scattered horizontally and vertically as it is with a TN display.

VA panels provide high-quality images, wide viewing angles along with excellent contrast ratio and high refresh rates. These factors make VA panel monitors preferred for graphic design, photographers, video editors, and others who often work on their PCs.

VA panels are also better when displaying fast-moving images because they offer high refresh rates hence have less motion blur. Additionally, some panels have support for even 120 Hz refresh rates for ultra-smooth movement in games and movies.

Traditional LCD displays use two polarizing filters and liquid crystals (LCs) to create all the colors and patterns that we see on computer monitors and flat-panel televisions.

What are the Benefits of VA Panels?Image quality of VA technology is considered better than TN technology; text appears crisper, and images appear sharper and richer in contrast and color.

The big downside of TN panels is their response time. Most TN panels have a response time of 5-8 MS, which is fine for most people. However, if you"re mostly into competitive gaming or fast-paced action games like me that require quick reflexes, then this could be a problem.

We did some research and came up with a list of the best monitors with VA panels, and they are;ViewSonic VX2457-MHD. It is a24-inch monitor with a 1920 x 1080 resolution and covers 100% of the sRGB spectrum. It also has plenty of picture-enhancing features, including adjustable color settings and support for AMD"s FreeSync technology (see also affordable G Sync monitors).

This is the best LCD panel type. IPS stands for In-Plane Switching, and the biggest advantage over the other panels listed above is its wide viewing angles.

These screens are more expensive than TN panels but offer a greater contrast ratio, higher resolutions than their TN counterparts. They also support higher refresh rates, lower response time which makes them ideal for monitors larger than 24 inches.

These panels offer much more consistent colors, which makes them ideal for graphic designers or anyone who does any kind of color-critical work on their monitor.

IPS panels offer wider viewing angles than VA panels do, making them better suited for use in public spaces such as retail stores or airports where you can expect people will be walking by your TV from both sides.

The contrast ratio of an IPS panel is higher than that of TN panels. The contrast ratio of a display refers to the difference between the darkest black and the brightest white that the display is capable of producing. This can be an important factor in overall display quality, depending on how you use your laptop or desktop monitor.

Some manufacturers that specialize in IPS panel interphases include Samsung, LG, and even Mac Apple. Also, almost all Dell monitors use IPS panels. However, there are plenty of other high-quality manufacturers that also offer IPS panels for you to choose from.

In a liquid crystal display (LCD), light passes through a pair of polarizers. Each polarizer is made of a long chain of molecules, each oriented in a different direction; one vertical, the other horizontal.

In an IPS LCD panel, liquid crystals are aligned so that both polarizers face the same way—horizontal. Light from behind the panel passes through one polarizer and then bounces off onto a second polarizer before reaching your eyes. This design makes IPS LCDs nearly as bright as VA panels and much brighter than TN panels without sacrificing contrast ratio or color accuracy.

If you"re looking for a new monitor, IPS panels may be the right ones for you. Here are some of their most important benefits:It allows for wider viewing angles. This is very useful for monitors used at work that involve customer service, where the monitor may be viewed from many different angles.

The IPS LCD displays are also characterized by their high degree of brightness and contrast, which makes them ideal for outdoor use, among many other features.

The typical lifespan of an IPS panel is around 100,000 hours, which is more than enough for even heavy users to get their money"s worth from their monitor.

They have great color reproduction. Many people who are serious about a photo or video editing are drawn to IPS panels because they offer superior color reproduction possibilities when compared with TN panels.

The main disadvantage of IPS panels is that they are more expensive than TN panels. The cost of an IPS panel will typically be $10-$20 higher than a comparable TN panel.

Today, the majority of flat-panel monitors use in-plane switching (IPS) technology. Best monitors that have IPS panels include;Samsung U28E590D 28-Inch 4K UHD Monitor. If you love gaming, then this is the product for you; it comes with AMD FreeSync, which proved successful in eliminating screen tearing since being introduced as VSync, as this post explained.

Also, bear in mind that if it is a flat panel display with a 1080p resolution or higher, you can refurbish it and resell it after using it. Older monitors with lower resolutions may not be worth much.

It offers a much higher resolution than conventional LCD and can be used to manufacture large panels. It"s an innovative display technology that has the potential to change the face of consumer electronics.

There are 3 main types of LCDs; VA (Vertical Alignment), TN (Twisted Nematic), and IPS (In-Plane Switching). All these technologies have been used for over 10 years and have their own pros and cons. However, they have reached their upper limits in terms of resolution and other features, and it"s nearly impossible to increase them any further. That"s where Super PLS-Plane to Line Switching comes in.

Super PLS-Plane to Line Switching offers resolutions as high as 8K, has wider viewing angles, and is brighter. The image quality presented by this technology is said to be much better than traditional LCDs, and it could potentially disrupt the current.

The Nano IPS panel technology adds a layer of nano-particles to the backlight in order to transmit the screen"s picture more efficiently and reduce the chances of image retention.

Advanced Hyper-Viewing Angle (AHVA) computer display was developed by AU Optronics Corp. It is a type of LCD that can be seen clearly even from the most acute angles. Through the process of strengthening the polarizing plate, it can help minimize the reflection ratio to less than 1%. The viewing angle is about 178 degrees.

Most LCDs (liquid crystal display) monitors are now manufactured with an anti-glare coating to reduce the effect of ambient light reflecting off the screen. Anti-glare coatings can reduce reflections by 25 to 70%.

VA panel is better thank IPS. Although IPS panels have a contrast ratio of 700:1 to 1500:1, they are still inferior to VA panels. The majority of VA monitor panels have contrast ratios above 2500:1, and some even reach 5000:1 or 6000:1. Even local dimming is used by more recent monitors to obtain even greater contrast ratios.

Yes, IPS is better than OLED. The main benefit of IPS panels is their increased brightness, particularly when combined with a tiny LED backlight. OLED displays are often limited to brightness levels of roughly 1,000 nits, while mini LED displays can reach peak brightness levels of around 2,000 nits.

auo va-type lcd panel factory

Samsung Electronics" first OLED gaming monitor Samsung Odyssey OLED G8, which attracted attention from all over the world, appeared for the first time at G-Star 2022. The Samsung Odyssey OLED G8 uses an OLED panel with quantum dot technology to show off the highest level of graphic quality that can be realized with an OLED panel. With specialized OLED technology, it supports a 175Hz refresh rate close to real-time...

Today Sharp has launched in Japan the Aquos XLED EP1 series of 4K TVs with N-Black panels with HDR10, HLG, and Dolby Vision certification. They employ the brand"s active mini LED drive technology which divides the mini LED backlight into more than 1000 areas to finely control bright and dark areas. Thanks to this technology, these 4K XLED TVs deliver three times higher peak brightness than that of conventional Sharp...

The Samsung Odyssey OLED G8 (G85SB) will debut at IFS 2022 in Berlin. This is the company"s first OLED gaming monitor and will be available in an ultra-thin, 34-inch form factor, delivering brilliant brightness on an OLED panel partnered with Quantum Dot Technology and packed full of premium gaming features including an incredibly low 0.1ms response time and 175Hz refresh rate. The new 34-inch, Odyssey OLED G8 is...

According to a report from The Elec, Samsung Display plans to increase QD-OLED production capacity by 30% by the end of the year. This will be achieved by reducing manufacturing time. The QD-OLED panels are currently produced on the Q1 line with a production capacity of 30,000 Gen 8.5 (2200 x 2500 mm) substrates per month. The yield rate has increased by 85% recently, which will help Samsung Display reach its...

auo va-type lcd panel factory

Alibaba.com offers 2364 va lcd panels products. About 43% % of these are lcd modules, 16%% are lcd monitors, and 1%% are digital signage and displays.

A wide variety of va lcd panels options are available to you, such as original manufacturer, odm.You can also choose from tft, ips and standard va lcd panels,

auo va-type lcd panel factory

Because panels from LG and Samsung are of higher quality and more durable than chinese manufacturers. Previously, it was possible to see the panel model in a dell monitor, now this is not possible. Why dell decided to hide it is not clear. I understand that there are different price segments and it is not profitable to install more expensive panels everywhere, but if you pay attention to different specialized forums, people choose a monitor not only by brand, but also by the installed panel. It is important.

auo va-type lcd panel factory

In order to choose the best monitor for your needs, it is very important to distinguish what kind of LCD panel interface type is in the monitor you’re looking at. The most common panels used nowadays are;

One of the types of panels that you will find in a computer monitor is a TN Panel. This stands for Twisted Nematic, and this particular type of LCD panel is generally the cheapest. They are the cheapest to manufacture among all LCD technologies, so they are the most commonly used in budget monitors.

If you are looking to game online, you will need a monitor with a higher refresh rate like that offered by a TN panel. Refresh rates are measured in Hertz (Hz), which defines how many times per second your screen can display new images.

The typical response time for a TN panel is less than 5 ms which is much faster than the 6 or 8 ms response time that other LCD displays have, such as vertical alignment or VA.

The biggest downside with these panels is often their viewing angles. On a TN panel, the viewing angles aren"t very good, and depending on how far off-center you are, the picture can begin to lose color and contrast.

TN panels also don"t support as wide a range of resolutions as IPS. This LCD monitor panel type has a poor contrast ratio when compared with other technologies such as IPS and VA. This results in an inability to display deep blacks and bright whites at the same time.

TN panels are manufactured by Samsung, LG, AUO, Chi-Mei, Chunghwa Picture Tubes, Hannstar Display Corporation, Sharp Corporation, CMI, Innolux, J-Tech Digital Imaging Co. Ltd, AU Optronics Corporation, etc.

A TN panel is a type of liquid crystal display (LCD) used in most LCD monitors and laptops. TN panels were the workhorse of the 1990s and early 2000s, but they were eventually replaced by their more-expensive cousins, the in-plane switching (IPS) and vertical alignment (VA) panels.

TN computer panels work by using two polarized filters, vertical and horizontal, to control the light that passes through them. The filters are arranged so that when the electrical current is off, light cannot pass through. When it"s on, it hits the twisted crystals to produce colors. The active layer is twisted to allow the light to pass through it, and this twist is controlled by electrical fields applied to the liquid crystal material.

It is worth noting that A TN panel is made up of millions of pixels, each pixel being red, green, or blue in color. The light from each pixel can be either on or off, so black is created when all the pixels are off and white when all are on. When all three colors are combined, any color can be produced. This arrangement is called RGB (red-green-blue).

A TN panel uses twisted nematic liquid crystals to form images. While not as desirable as other technologies, it does have several benefits worth considering when making a purchasing decision.They are mostly found in budget LCDs, as they are cheaper to manufacture and therefore sell for less.

TN panels have excellent response rates and refresh rates, typically 1 - 2 milliseconds and 50 – 75 Hz, respectively. This makes them ideal for high-end gaming

TN is the oldest and most common type of LCD panel, and it"s also the cheapest to produce. TN panels were the first panels to be introduced to the market, but they"re no longer as popular as they used to be. This is because TN panels have several downsides:The main disadvantage of TN panels is limited viewing angles, which can be extremely limiting in some cases. If you"re sitting straight in front of the monitor, everything is fine, but if you move to the side, then all colors shift and get distorted. That can be extremely annoying for graphic designers or architectswho work with color palettes, photographers who need exact color matching, etc. (see also

TN panels typically have lower contrast ratios than IPS displays do, so they don"t look as rich in color or dark black. So TN panels are usually not suitable for professional applications such as color-critical photo editingand graphic design.

Many gamers prefer TN panels because they provide a very fast response time and higher refresh rates. You can also find some with a refresh rate of 240Hz, which is even better.The Asus VG248QE is a 24-inch LCD display with a 1920 x 1080 resolution and a 1ms response time. It uses a TN panel, so don"t expect much in terms of viewing angle or color reproduction accuracy compared to an IPS display. But if you"re looking for a good 144Hz monitor, choose this one.

ViewSonic VX2458-MHD. It has a TN panel. The refresh rate of this monitor is 72Hz, which is standard. The response time of this monitor is 1ms. It also comes with 4 USB 3.0 ports, which is great if you plan on hooking up multiple devices, which is frequently used when trading. If you have a setup like that, you will also want to look at bezel less monitors, or frameless monitors, for your needs.

Another common type of panel is a VA panel. This stands for Vertical Alignment and is a step above a TN panel in terms of quality. Its name comes from the fact that light emitted from the screen"s backlight (see also LED monitors) is aligned vertically rather than being scattered horizontally and vertically as it is with a TN display.

VA panels provide high-quality images, wide viewing angles along with excellent contrast ratio and high refresh rates. These factors make VA panel monitors preferred for graphic design, photographers, video editors, and others who often work on their PCs.

VA panels are also better when displaying fast-moving images because they offer high refresh rates hence have less motion blur. Additionally, some panels have support for even 120 Hz refresh rates for ultra-smooth movement in games and movies.

Traditional LCD displays use two polarizing filters and liquid crystals (LCs) to create all the colors and patterns that we see on computer monitors and flat-panel televisions.

What are the Benefits of VA Panels?Image quality of VA technology is considered better than TN technology; text appears crisper, and images appear sharper and richer in contrast and color.

The big downside of TN panels is their response time. Most TN panels have a response time of 5-8 MS, which is fine for most people. However, if you"re mostly into competitive gaming or fast-paced action games like me that require quick reflexes, then this could be a problem.

We did some research and came up with a list of the best monitors with VA panels, and they are;ViewSonic VX2457-MHD. It is a24-inch monitor with a 1920 x 1080 resolution and covers 100% of the sRGB spectrum. It also has plenty of picture-enhancing features, including adjustable color settings and support for AMD"s FreeSync technology (see also affordable G Sync monitors).

This is the best LCD panel type. IPS stands for In-Plane Switching, and the biggest advantage over the other panels listed above is its wide viewing angles.

These screens are more expensive than TN panels but offer a greater contrast ratio, higher resolutions than their TN counterparts. They also support higher refresh rates, lower response time which makes them ideal for monitors larger than 24 inches.

These panels offer much more consistent colors, which makes them ideal for graphic designers or anyone who does any kind of color-critical work on their monitor.

IPS panels offer wider viewing angles than VA panels do, making them better suited for use in public spaces such as retail stores or airports where you can expect people will be walking by your TV from both sides.

The contrast ratio of an IPS panel is higher than that of TN panels. The contrast ratio of a display refers to the difference between the darkest black and the brightest white that the display is capable of producing. This can be an important factor in overall display quality, depending on how you use your laptop or desktop monitor.

Some manufacturers that specialize in IPS panel interphases include Samsung, LG, and even Mac Apple. Also, almost all Dell monitors use IPS panels. However, there are plenty of other high-quality manufacturers that also offer IPS panels for you to choose from.

In a liquid crystal display (LCD), light passes through a pair of polarizers. Each polarizer is made of a long chain of molecules, each oriented in a different direction; one vertical, the other horizontal.

In an IPS LCD panel, liquid crystals are aligned so that both polarizers face the same way—horizontal. Light from behind the panel passes through one polarizer and then bounces off onto a second polarizer before reaching your eyes. This design makes IPS LCDs nearly as bright as VA panels and much brighter than TN panels without sacrificing contrast ratio or color accuracy.

If you"re looking for a new monitor, IPS panels may be the right ones for you. Here are some of their most important benefits:It allows for wider viewing angles. This is very useful for monitors used at work that involve customer service, where the monitor may be viewed from many different angles.

The IPS LCD displays are also characterized by their high degree of brightness and contrast, which makes them ideal for outdoor use, among many other features.

The typical lifespan of an IPS panel is around 100,000 hours, which is more than enough for even heavy users to get their money"s worth from their monitor.

They have great color reproduction. Many people who are serious about a photo or video editing are drawn to IPS panels because they offer superior color reproduction possibilities when compared with TN panels.

The main disadvantage of IPS panels is that they are more expensive than TN panels. The cost of an IPS panel will typically be $10-$20 higher than a comparable TN panel.

Today, the majority of flat-panel monitors use in-plane switching (IPS) technology. Best monitors that have IPS panels include;Samsung U28E590D 28-Inch 4K UHD Monitor. If you love gaming, then this is the product for you; it comes with AMD FreeSync, which proved successful in eliminating screen tearing since being introduced as VSync, as this post explained.

Also, bear in mind that if it is a flat panel display with a 1080p resolution or higher, you can refurbish it and resell it after using it. Older monitors with lower resolutions may not be worth much.

It offers a much higher resolution than conventional LCD and can be used to manufacture large panels. It"s an innovative display technology that has the potential to change the face of consumer electronics.

There are 3 main types of LCDs; VA (Vertical Alignment), TN (Twisted Nematic), and IPS (In-Plane Switching). All these technologies have been used for over 10 years and have their own pros and cons. However, they have reached their upper limits in terms of resolution and other features, and it"s nearly impossible to increase them any further. That"s where Super PLS-Plane to Line Switching comes in.

Super PLS-Plane to Line Switching offers resolutions as high as 8K, has wider viewing angles, and is brighter. The image quality presented by this technology is said to be much better than traditional LCDs, and it could potentially disrupt the current.

The Nano IPS panel technology adds a layer of nano-particles to the backlight in order to transmit the screen"s picture more efficiently and reduce the chances of image retention.

Advanced Hyper-Viewing Angle (AHVA) computer display was developed by AU Optronics Corp. It is a type of LCD that can be seen clearly even from the most acute angles. Through the process of strengthening the polarizing plate, it can help minimize the reflection ratio to less than 1%. The viewing angle is about 178 degrees.

Most LCDs (liquid crystal display) monitors are now manufactured with an anti-glare coating to reduce the effect of ambient light reflecting off the screen. Anti-glare coatings can reduce reflections by 25 to 70%.

VA panel is better thank IPS. Although IPS panels have a contrast ratio of 700:1 to 1500:1, they are still inferior to VA panels. The majority of VA monitor panels have contrast ratios above 2500:1, and some even reach 5000:1 or 6000:1. Even local dimming is used by more recent monitors to obtain even greater contrast ratios.

Yes, IPS is better than OLED. The main benefit of IPS panels is their increased brightness, particularly when combined with a tiny LED backlight. OLED displays are often limited to brightness levels of roughly 1,000 nits, while mini LED displays can reach peak brightness levels of around 2,000 nits.

auo va-type lcd panel factory

When buying a TV with LED technology, we can find different screen technologies. Choosing a TV with one type of screen or another is a factor that will influence the image quality significantly. Mainly two types of panels are manufactured: IPS and VA panels. As we will see now, depending on the use you are going to give to your TV, you may be more interested in a TV with VA panel or IPS panel.

Next, we are going to explain the differences between IPS panels and VA panels. In this way, we hope to help you choose the best TV for your particular use.

First of all, comment that the name IPS comes from the fact that the liquid crystals of the panel are aligned horizontally (In-Plane Switching). These crystals are parallel to the glass substrates allowing the orientation to be changed by rotating the liquid crystal molecules in the same plane.

This is the technical explanation, but the interesting thing is to know, what performance this type of panel is going to give us and what pros and cons it offers.

An IPS panel offers as a great advantage, wide viewing angles. This means that even if the TV is viewed from a side angle, contrast and color are maintained.

Some IPS panels offer lossless viewing angles up to 178°. Thanks to this, a TV with an IPS panel can be viewed correctly from the sides. The good thing about this is that color saturation and contrast will remain almost lossless when viewed from the side.

So, you may be interested in buying an IPS panel TV if you are going to watch it from different points or if you are several in the family and there are some of you who watch the TV from a more foreshortened position.

Their response time is usually somewhat lower than those offered by VA panels. The time it takes for the pixels to change is somewhat less and they can deliver moving images with a little more clarity.

As weaknesses, their contrast is usually quite low. The contrast values of any IPS panel are always poorer than those offered by a VA panel. In this type of panels, the black level achieved is very low and are usually dark grays instead of blacks.

The black level, however, can be improved in Full Array TVs with Local Dimming and in Mini LED models. The models with this system use more LED bulbs and with the possibility of adjusting the illumination by zones, achieving better black values. The downside is that as a general rule, IPS panels tend to have more light leakage problems than VA panels, although this varies from unit to unit and the type of backlight used.

Generally, they are not the best choice for movie buffs as a lot of information is lost in dark scenes. Compared to a VA panel, this problem is noticeable.

IPS panels are widely used in monitors, thanks to what we have said about their better response time and better color reproduction and are especially recommended for photo editing.

The main manufacturer of IPS panels is LG. Some Sony and Panasonic models carry IPS panels, and these are mostly manufactured by LG Display. Although recently LG announced that it was cutting back on LCD panel manufacturing.

Within IPS panels there are different variants with different names but which are based on the same concept and obtain very similar performance. The best known are the PLS and ADS panels, which are mounted in some current Samsung TVs.

Unlike an IPS panel, a VA type panel has an alignment of liquid crystals in a vertical plane to the glass substrate and which tilt when a voltage is applied to let light through.

VA panels achieve much higher contrasts than IPS panels. Their major advantage is the reproduction of deep blacks and better detail in shadow areas, so that not as much information is lost as in IPS type displays.

The contrast levels of a VA panel, can be up to 300% higher than that of an IPS panel. The black tones it achieves are always much deeper. This is very noticeable in dark scenes in movies. Therefore, it is the best choice for moviegoers.

However, new versions of these panels are being produced and the angles are improving, especially in the high end, and in some cases are equal to the angles offered by IPS.

The main manufacturer of VA panels was Samsung and their own TVs mainly mounted panels manufactured by themselves. However, like LG, they have greatly reduced production and it is now very common for them to carry panels from other manufacturers such as BOE, AUO, etc.

The other manufacturers such as Sony and Panasonic have long since stopped making panels and carry panels made by companies such as Chi Mei, Sharp or AUO. In any case, the fact that a brand does not produce its own panels, does not mean in any case, less image quality.

We leave you with a summary of the advantages offered by each type of panel for you to value which is the option that suits you best according to the use you give to the TV.

Here the winner is IPS panels by offering better viewing from extreme angles. Colors and contrast are best maintained when viewed at angles greater than 35°..

Anyway, there are some TVs with VA panel, which incorporate a filter that improves the viewing angle. An example is the Samsung’s top-of-the-line QLED models. and the X95K and Z9K from Sony.

In summary, especially in the low and mid ranges IPS panels provide a better side view than VA panels, so they are better if you view them from different points.

The winner in this field is VA panels. The contrast is much higher than that offered by IPS panels, which are far inferior in this respect. Blacks tend to be purer on VA panels than on IPS panels.

The difference between IPS and VA panels is usually quite noticeable in this aspect reaching up to 300% in some cases. Therefore, they are always much more recommendable for users who like movies.

In the contrast variant, the brightness level also comes into play. In this aspect, an IPS or VA panel can reproduce a similar brightness, but having a better black level, the contrast ratio of a VA panel is usually much higher than that provided by an IPS.

It is unusual for burn-in or retentions to occur on LCD displays whether they are IPS or VA type. This problem occurs when an image is left static for a prolonged period of time. However, the risk is higher for IPS type displays.

VA panels are more recommended for watching movies and series in dark rooms and in a location that is quite in front of the TV. They give us the highest contrast values and allow us to see better details in the dark parts of the image. Also, although it depends on each specific model, they usually have less reflections.

IPS panels on the other hand, are the best option, if the location from where you sit is not fully frontal to the TV and you usually watch it in a brightly lit room. Colors and contrast are maintained with less variation when viewed from the sides.

2022 models2021 modelsQNED96, QNED91, QNED86, QNED80: VA or IPS depending on inchAll the range mounts IPS panel except in 50 and 70 inches which is VA.

As you can see, each type of panel has its advantages and disadvantages. With this comparison, hopefully the differences between IPS and VA panels are clear to you. Moreover, these panels are not only found in televisions, but are also manufactured for monitors and cell phones.

If in your case you are going to be viewing the TV from a fairly foreshortened angle, IPS panels are going to offer you a better angle than VA panels. The colors will maintain better saturation as well as the contrast will be maintained, making the picture look less washed out.

As we have seen, it depends on each situation, but generally in the absence of assessing other important aspects such as the image processor, refresh rate, etc., we recommend a TV with VA panel. They are the most recommended for watching movies and series due to their better contrast and detail in the dark parts.

Recently, TVs with Mini LED technology have been launched, which still use an LCD panel with backlighting by LED bulbs, but now the size of these is much smaller. In this way, they can have many more bulbs, so that the backlighting is more accurate, improving blacks and reaching a higher peak brightness. In this last aspect of brightness, Mini LED TVs are superior to OLED models.

auo va-type lcd panel factory

Contrary to what you may think, not all LCD TVs are built around the same core panel technology. They can actually have at their hearts one of two really quite different technologies: VA or IPS.

Each, as we’ll see, has its own distinct advantages and disadvantages – so much so that we personally think the type of panel a particular TV uses should be presented right at the top of its specifications list, rather than typically left off altogether. Especially as some brands have been known to actually mix and match VA and IPS panels at different screen sizes within the same TV series.

The VA initialism stands for Vertical Alignment. This name is derived from the way VA panels apply voltage to vertically aligned liquid crystals that have been mounted perpendicularly to the panel’s glass substrate, making them tilt as required to let the necessary amount of light through for each image frame.

The main advantage of VA panels is contrast. Their perpendicular crystal alignment provides greater control over the light passing through each pixel, meaning dark scenes and dark areas look less grey / enjoy better black levels.

The extent to which this strength is exploited can vary greatly between different manufacturers, and depends on any number of secondary factors. The type and position of LED lighting a particular VA screen might be using can have an impact, for instance. There are multiple variations on the VA theme available from different manufacturers, too. As a basic principle, though, black levels and contrast are consistently and often considerably better on LCD TVs that use VA panels.

Because of their ability to control light better, high-end VA panels generally deliver more brightness in real world conditions than IPS ones do. This further enhances their contrast capabilities, and arguably makes them more consistently able to do fuller justice to the wider light range associated with high dynamic range technology.

Being able to deliver dark scenes with relatively little overlying low-contrast greyness additionally means that VA panels tend to achieve more consistent colour vibrancy and toning.

VA panels for use in LCD TVs come from a number of panel manufacturers, including Samsung Display (which makes a so-called SVA variant) and AU Optronics (which makes an AMVA variant). TV brands are able to buy in panels from these and other VA panel manufacturers as they see fit.

Samsung Electronics is the most consistent user of VA panels in its LCD TVs. In fact, until recently pretty much every Samsung TV at every price level used a VA panel. For the past couple of years, though, IPS panels have unexpectedly cropped up in one or two parts of Samsung’s TV range, including 2021’s high-end QN85 series.

Sony predominantly uses VA panels on its most premium TVs, but it also habitually mixes IPS and VA panels across its wider mid-range and entry level LCD ranges. The same goes for most of the other big brands, too, including Panasonic and Philips.

IPS stands for In-Plane Switching. Like VA panels, IPS panels work by manipulating voltage to adjust how liquid crystals are aligned. Unlike VA, though, IPS panels orient their crystals in parallel with (rather than perpendicular too) the glass substrates present in every LCD panel, and rotate their crystals around to let the desired amount of light through rather than tilting them.

By far the biggest and most talked about advantage of IPS technology is its support for wider viewing angles. In fact, one way of identifying IPS panels has traditionally been to look for quoted viewing angles of 178 degrees.

When we talk about wide viewing angle support in relation to LCD TVs, we’re talking about how much of an angle from directly opposite the screen you can go before the picture starts to lose contrast, colour saturation and, sometimes, brightness.

With VA panels the angle you can watch them before the picture starts to deteriorate sharply can be really quite limited – as little as 20 degrees off axis. While we’d say the 178-degree claims for regular IPS panels are rather exaggerated, you can typically sit at a significantly wider angle than you can with VA and still enjoy a watchable picture.

The VA/IPS viewing angle situation is muddied a little by the introduction into a few high-end VA TVs of wide angle technologies based around filters or sub pixel manipulation. These technologies can be associated with other problems, though, such as reduced resolution, and can still struggle to suppress backlight blooming around stand-out bright objects with LCD TVs that use local dimming backlight systems.

Traditionally IPS panels have been associated with – on high-end screens, at least – wider colour gamuts than VA panels can readily manage. They retain this colour gamut better, too, when viewing the screen from an angle. This is why many professional designers, for instance, have tended to prefer IPS technology to VA. There can be some pretty extreme variance in the range of colour supported across different IPS price points, though, and improvements in premium VA solutions – especially the widespread use of Quantum Dot technologies – have largely evened things up, at least at the premium end of the VA market. In fact, with dark scenes, at least, IPS’s issues with black levels and ‘grey wash’ effect can give good VA panels a colour advantage.

As with VA, there are different variations on the basic IPS theme made by different panel manufacturers. LG Display is by far the biggest manufacturer of IPS LCD panels for TVs, but AU Optronics also makes them, as well as, more surprisingly, Samsung – though some of the non-LG Display IPS products seem to be more focused on PC monitors than TVs.

Given how dominant LG Display is in manufacturing IPS LCD panels, it’s not surprising to find that pretty much every LCD TV LG Electronics makes features an IPS panel at its heart. Other TV brands that use IPS panels on at least a few of their TVs each year include Panasonic, Philips, Sony and Hisense. In fact, the only big brand that has tended to shun IPS is Samsung (perhaps because of arch rival LG Display’s dominance of the IPS market).

If you’re able to actually get your hands on an LCD TV, try knocking gently on its screen. If it’s an IPS panel it will feel solid and the picture will only be slightly affected – or completely unaffected – by the impact of your knocks. If it’s a VA panel, the picture will distort quite noticeably around points of impact.

It’s tempting to assume that any TVs with obviously low contrast are IPS while any screen with a narrow viewing angle is VA. As well as depending on having a wide experience of lots of panels, though, there’s just too much variation in the high and low-end fringes of each technology for this approach to be reliable.

Arguably your best bet is to check out a TV model you’re interested in on an industry website called Displayspecifications.com(opens in new tab), which includes usually reliable information on the core panel of pretty much every TV released.

Our long experience of testing VA and IPS TVs, though, has led us to conclude that in general, the sort of person most likely to be turning to us for buying advice will be happier with an LCD TV based on VA technology.