lifetime of lcd displays made in china

Much has been made of the longevity of LCD displays, at least compared to plasma monitors. The conventional wisdom is that LCD televisions last longer than their plasma TV counterparts, which is true. The problem is, a lot of people extrapolate from this that either (a) LCD displays last forever or (b) LCD monitors suffer no picture "wear" over time. Neither of these suppositions is correct.

Flat-panel LCD screen displays have a lifespan approaching 60,000 hours. The lifespan of an LCD display is generally longer than that of similar-sized plasma displays. Some manufacturers even claim that their LCDs can last upwards of 80,000 hours when used continuously under controlled conditions (e.g., in a room with "standard" lighting conditions and 77° temperatures throughout). Just how realistic such claims are is debatable. After all, whose living room has no windows and remains at a perfectly comfortable 77 degrees year-round?

In any case, the pictures on LCD displays will show some "wear" because they are generated by powerful lamps, which, like any lighting appliance, will dim over time and with use. The picture you see will dim ever so slightly as the lamp itself dims.

Therefore, the most important thing to consider when it comes to the lifespan of your LCD TV is the actual lifespan of the light source in your LCD. LCD TVs last as long as their lightsources do. So, the lightsource in your LCD monitor is the critical component of your LCD display unit.

The quality of your lightsource is particularly important for maintaining a proper white balance on your TV. As these florescent bulbs age, colors can become unbalanced, which could result in too much red, for example, in your picture. So, it pays to buy name-brand displays. You will definitely pay more for better LCD display brands like Sharp, Toshiba, JVC, or Sony than you will for cheap Chinese or Korean variety knock-offs, but you"ll get a backlighting bulb of higher quality and, in the end, a TV whose colors will stay truer longer.

To ensure the integrity of your lightsource for the duration of your LCD display"s lifespan, you will definitely want to adjust the CONTRAST setting of your LCD TV. Too high of a CONTRAST level will prematurely age your lightsource because it will have to work harder to maintain such light intensities. Your best bet is to keep your CONTRAST set appropriately for the conditions under which your view your LCD display. Higher light levels require slightly higher CONTRAST levels, while lower ambient light levels demand less CONTRAST.

You will also want to pay attention to the warranty for this particular feature, since it can be shorter than for the display as a whole. This means you might have to buy a whole new LCD monitor because the coverage on its backlight has expired. Moreover, some bulbs can be replaced, while others are built in to the unit itself. You should definitely do some research on the backlighting system, how it"s configured, and how it"s warranted.

Note: Sharp is currently the only manufacturer that makes LCD displays whose lamps can be changed out. This is definitely something to consider, given that LCD monitors dim as their lightsources do, so being able to replace its lamp will restore your picture to "like new" levels.

lifetime of lcd displays made in china

Responsible for performing installations and repairs (motors, starters, fuses, electrical power to machine etc.) for industrial equipment and machines in order to support the achievement of Nelson-Miller’s business goals and objectives:

• Provide electrical emergency/unscheduled diagnostics, repairs of production equipment during production and performs scheduled electrical maintenance repairs of production equipment during machine service.

lifetime of lcd displays made in china

Perhaps you’ve wondered how long a digital display lasts. It’s a great question. One quick search on Google will tell you that an LCD panel has a lifespan of about 60,000 hours, which is equivalent to almost seven years.

Of course, LCDs aren’t the only kind of displays. You also have LED, OLED, QLED, ELD, PDP, and MicroLED, plus many other variations. Obviously, that 7-year estimation will not apply across the board. For the sake of ease, let’s just focus on some of the common types of displays that most of us are familiar with.

Here’s some LCD alphabet soup: There are LED LCD displays, CFFL LCD displays, LED displays, and more. With all these acronyms, it can get a bit confusing. What"s important to note is whether or not the display uses an LCD panel, and how the LCD panel is illuminated. You can read more about thedifferences between types of LCD and LED signage, but these are the most common types:

LCD displaysgenerate images and colors via a Liquid Crystal Display (LCD) panel, which is not self-emitting and requires an external light source to illuminate the image, typically an LED backlight. Their full name "LED-backlit LCD display" is commonly shortened to "LED displays", which is why they"re often confused with the true LED displays we"ve identified above.

Unfortunately, LED backlights used in LCD displays burn out over time. If used at high or maximum brightness, which is necessary for outdoor applications,an LED backlight will last between 40,000 to 60,000 hours. Or, about 4.5 to 7 years.

OLED stands for Organic Light Emitting Diode. OLED displays differ from common LCD displays in that their pixels are self-illuminating. In other words, there is no LED backlight required to illuminate the the display image; everything occurs within the OLED pixels themselves. According to onearticle from the US Department of Energy,OLED screens have a life expectancy of about 40,000 hours at 25% brightness, and 10,000 hours at full brightness. That equates to about 1 to 4.5 years, which is a much shorter (albeit, brilliant) lifetime than an LCD display.

Perhaps you noticed that the acronym QLED closely resembles the acronym OLED. This is not accidental. QLED is basically Samsung’s original design built to compete with OLED technology. However, the two are not the same. QLED stands for Quantum Light Emitting Diode. While QLED is similar to a regular LED design, it in fact differs by using nanoparticles called “Quantum dots” to achieve its unique brightness and color. Samsung approximates that the lifespan ofQLED panels are likely to last 7-10 years. After that, a user is likely to notice traces of degradation.

MicroLED is an emerging display technology, consisting of small LEDs in tiny arrays within each pixel. This technology goes beyond the offerings of the formerly frontrunning OLEDs, with much darker blacks and more radiant contrast levels. And, unlike OLEDs, MicroLEDs are not organic. They are not as subject to burn-in, and thus, have a longer lifespan than OLEDs. However, they are significantly more expensive - so much, in fact, that they aren’t considered a viable option for the majority of consumers.According to Samsung, the lifespan of its MicroLED panels should last about 100,000 hours, or, roughly 11 years.

PDP stands for Plasma Display Panel, and it refers to displays that use small cells full of plasma. The atoms within the plasma emit light upon being charged by electricity. While PDP is generally considered to offer better colors than LCDs, they consume a lot more power and usually cannot be battery-operated.The average lifespan of the newest generation of PDPs is approximated to be 100,000 hours, or 11 years of continual use.

In some ways,reflective LCD panelsoperate similarly to other LCDs, only they have one key difference - they do not require a backlight. Instead, they rely on ambient light (or sunlight) in order to produce images. This opens the door to some groundbreaking possibilities. The first (and most appreciable) is low power consumption. Reflective displays use up to 95% less energy. Not bad - especially in a world that is continually looking for new ways to go green. Take into consideration the financial implications of this. Lower power means less money spent on operating costs.

Being that reflective displays do not require a backlight (a component that is particularly subject to degradation), and since they do not generate as much heat, it is safe to say that the lifespan of these displays should far exceed that of backlit LCD panels (which was 7 years at the high end). However, being that thisinnovative technologyis relatively new, its actual lifespan is therefore more difficult to estimate -- simply because it has yet to be reached.

There are also a few challenges that can affect reflective displays. For one, they rely on ambient light. On a nice sunny day, these displays perform beautifully and can be easily seen in even the brightest of conditions. This performance wanes as the available ambient light decreases. And, since they do not generate light of their own, they are not designed to be viewed under nighttime or extremely low light conditions (without additional lighting features). In short, their images are visible to the degree that ambient light is present. However, in light of this, side light (and front light) options are being explored.

One company at the front lines of this research isAzumo. Azumo has created a light guide that laminates to the front of a display. It requires 90% less energy than the backlight of a traditional LCD display. This greatly improves the problem of low light visibility otherwise encountered, and keeps reflective displays in the same low energy consumption ballpark. One issue, however, is that Azumo currently only offers its light guides for smaller-sized units. If you happen to want this feature applied to a display that is over 10” diagonally, then you’re still on the search for a solution.

Other “pioneer companies” are at the frontier of this research as well, and many are already innovating new solutions to increase the viability of reflective technology - both in their low light visibility and in the screen sizes they are available in. Due to the huge potential offered by reflective technology, it is fair to assume that we will see even greater enhancements to it in the very near future.

One other factor to consider regarding reflective technology is its cost. That reflective layer is more costly to manufacture than many of the backlights it replaces, creating a seemingly greater upfront cost for those who are interested in investing in energy-efficient signage. However, these initial price points are quickly justified as buyers will recognize the significantly lower operating costs and increased longevity (not even including replacement costs of other “expired” displays) that comes with their purchase of reflective display signage. If a backlit LCD panel only lasts 7 years, for example, you’ll have paid for that LCD twice in the period of ten years. A very valid question arises… is that “cheaper” backlight really cheaper? Probably not. It only feels that way at first.

Sun Vision Displayis working hard to create reflective display solutions for the digital signage world. We are currently offering them in 32" and 43" diagonal sizes, with a 55” size in development. These displays are built formany environments. We are thrilled to be bringing such innovative solutions to the market.

If you have any questions, or if you would like to talk to a representative about how our solutions might work for you, please don’t hesitate to contact us. Simply scroll down to the bottom of the page to our form, and we’ll get back to you in a timely manner. We look forward to the possibility ofworking with you!

lifetime of lcd displays made in china

Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.

Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:

Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:

MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:

Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.

LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.

"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.

"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.

"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.

Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.

"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.

Shilov, Anton. "JOLED Starts Construction of New Printed OLED Facility". www.anandtech.com. Archived from the original on 2019-06-30. Retrieved 2019-06-30.

lifetime of lcd displays made in china

The general quality of Chinese CCTV monitors gets much improved. Three major Chinese monitor manufacturers are Skyworth, Stonesonic and Satow. The industry started export quite earlier compared to other security vendors in China. Now, LCD monitors, monitors for surveillance in commercial setting and LCD multiple screen combination panel wall are their main products.

The general quality of Chinese CCTV monitors gets much improved. Three major Chinese monitor manufacturers are Skyworth, Stonesonic and Satow. The industry started export quite earlier compared to other security vendors in China. Now, LCD monitors, monitors for surveillance in commercial setting and LCD multiple screen combination panel wall are their main products.

According to some industry expert, the ratio of global LCD to CRT production is roughly about 6:4. LCD monitors, in the past, had some defeats in certain aspects, such as brightness, contrast, visual angle, response time, lifespan and production. Along with the technical improvement, current LCD monitors are better performed in color, brightness, contrast, nearly 180-degree visual angle and response time. Plus, it has advantages in thin design, environmental friendly, and energy-saved (because of lead in the components of CRT monitors). LCD monitors have gradually replaced the CRT.

Many users might confuse LCD monitors with LCD display or LCD TV. However, the basic requirements for LCD monitors are quite different from them. For one LCD monitor, it is usually required to have higher standards on visual angle, brightness and contrast, color display ability, response time, resolution and the stability to operate continuously 24/7. Therefore, the safe electric performance and good heat emission design should be taken into the consideration for the design of one LCD monitor.

For one LCD monitor, a much broader visual angle and higher brightness and contrast are required for watching the fixed video picture at long distances. For PC display, the ideal pictures can be showed if it meets the required brightness and contrast of 200 cd/m2 and 300:1 respectively. But for monitors, the brightness and contrast should be not less than 300 cd/m2 and 450:1. The quality of picture is not only related to the brightness and contrast but also the definition, color reducibility, and SNR (signal to noise ratio) specifications. In addition, the response time is also quite important for LCD monitors. Manufacturers recently have taken a lot of efforts on increasing the response speed from the early 60 ms, 30 ms and 25 ms to current 16 ms, 12 ms and 8 ms; the tailing phenomenon has been almost disappeared and has little difference with response time for CRT.

One of Satow"s latest launch--42" Color LCD monitor, ML-4200TM1. It features 3-dimension image processing to reduce the noise and avoid the interference from the bright, making the picture display more sophisticated with PAL/NTSC. Its unique DNX technology makes the image more stable while displaying the moving pictures and video. The resolution is about 1920 x 1080; brightness is 500 cd/m2 and the contrast ratio is 2000:1. The response time can be 6.5 ms. Power supply is AC 100-240V.

Many LCD display"s power is often DC 12 V, using the external AC power adapter 220V AC/12V DC; however, it could not meet the requirements of electromagnetism interference (EMI) and electromagnetism compatible electron agnetic compatibility (E-MC) for professional monitors working at factories. Take Stonesonic. It adopted the reliable built-in switch power instead that can meet the requirements of electromagnetism compatible and interference standard. So it ensures the constant working of the machine no matter under what kind of environments and its much more coordinated appear once design is also more convenient for project mounting and operation. Skyworth also highlights its internal power supply with low consumption, and its screen service expectancy exceeds 60,000 hours. The latest I2C controlling circuits, the high reliability of whole system.

The luminescence of LCD panel is realized through several lamp tubes (cathode vacuum tube). Because some of the tubers are fixed at the fringe of the panel, it is normal that the frame becomes heated when being used for a certain period. In the design of LCD monitors, Stonesonic applied the hydrodynamics theory to make the air whirlpool inside the space of the machine form the convection, and operate the heat emission through those metal parts inside at the same time, which all ensure the reliable and constant working of the machine. So it will not affect the lifespan of the monitor if the frame of the LCD feels a little heated by hand.

Stonesonic recently launched one 19"color LCD monitor built-in DVR--SCM-1980MR. It is one kind of 8-channel monitoring and recording all-in-one monitor, adopting top-quality 19" TFT LCD panel and has functions of 4-8 channels composite video simultaneous input, real-time monitoring and recording, network remote monitoring, recording backup and alarm pan/tilt controlling.

Satow Eletronic also has one 17" LCD with built-in 4-channel MPEG-4 DVR system-BL-1700T4/CP-5714CB. Adopting the latest DSP hardware compression for each channel, the resolution is quite high. It can remote monitor via network, viewing with IE Browser or client-end software. For the LCD monitor, its contrast ratio is 800:1, brightness ratio of 300 cd/m2, display color in 16.2 M.

Stonesonic and Skywor th also developed their latest products of LCD combination panel wall. For Stonesonic, its LCD combination panel wall has already been registered and approved for six patents. The hardware basic is FPG A array, using parallel high speed image processing technology. It implements multiple high speed video signal"s unify processing technology. It totally replaces the insert card combination controller and solves the problem of quantity limitation of VGA input. It possesses all the excellent DID display technology, embedded hardware combination technology, multiple image processing technology, signal switching technology. This advanced LCD combination panel wall display system has benefits of high brightness and high definition, low power consumption and long lifespan.

Stonesonic monitor is used in many different applications such as security, broadcast, industry and multi-media. Their application in security accounts for 60 to 70 percent. Its strengths are high definition in image quality; more natural color in display. Its LCD export accounts for 50 percent of their total market. Till now, Stonesonic has had sales points in over 80 countries. It targets more at European and US markets. The latest products also includes one big IP screen monitor; very easy to install within one single IP cable. It also differentiated others in self-developed chipsets for monitors. Other vendors might adopt AV chips for LCD monitor so the 3D image may be worse in quality.

lifetime of lcd displays made in china

Samsung Display will stop producing liquid crystal display (LCD) panels in China and South Korea at the end of the year in order to concentrate on the new generation of "quantum dot" (QD) screens, Reutersreports. Any LCD orders made before the end of the year will still be fulfilled.

Samsung made its plans for QD tech known last year, when it announced its $11 billion investment into a plant capable of manufacturing true QLED TV screens that self-illuminate. Traditionally, Samsung"s quantum dot LCD tech puts LED backlights behind a filter (so the display doesn"t match up to the likes of say, LG"s OLED TVs), but research at the end of 2019 helped mitigate some development problems, such as burn-in. Samsung"s forthcoming QD tech instead relies on indium phosphide instead of toxic cadmium, and has a lifetime of up to a million hours.

The multi-billion dollar investment will take place over five years and will see Samsung convert one of its existing South Korean LCD lines into a facility to mass produce these screens. Falling demand for LCD products and a manufacturing supply glut means Samsung is obviously looking for new avenues, so for the company to essentially do away with a tried-and-tested technology and go all-in on another suggests that QD screens are very likely to feature in our viewing futures.

lifetime of lcd displays made in china

If you’re designing a display application or deciding what type of TV to get, you’ll probably have to choose between an OLED or LCD as your display type.

Not sure which one will be best for you? Don’t worry! We’re here to help you figure out the right display for your project or application. In this post we’ll break down the pros and cons of these display types so you can decide which one is right for you.

LCDs utilize liquid crystals that produce an image when light is passed through the display. OLED displays generate images by applying electricity to organic materials inside the display.OLED and LCD Main Difference:

Contrast refers to the difference between the lightest and darkest parts of an image. High contrast will produce sharper images and more easily readable text. It’s a crucial quality for high fidelity graphics and images or to make sure that a message on a display is very visible.

graphics and images visible. This is the reason you’re still able to see light coming through on images that are meant to be dark on an LCD monitor, display, or television.

OLEDs by comparison, deliver a drastically higher contrast by dynamically managing their individual pixels. When an image on an OLED display uses the color black, the pixel shuts off completely and renders a much higher contrast than that of LCDs.OLED vs LCD - Who is better at contrast?

Having a high brightness level is important if your display is going to be used in direct sunlight or somewhere with high ambient brightness. The display"s brightness level isn"t as important if it’s going to be used indoors or in a low light setting.OLED vs LCD - Who is better at Brightness?

Have you ever looked at a screen from an angle and noticed that the images became washed out or shadowy? The further away you get from the “front and center” view, the worse the image appears to be. This is an example of viewing angles in action – the wider the viewing angle, the better the images on screen will appear as you view them from different vantage points.

This means the display is much thinner than LCD displays and their pixels are much closer to the surface of the display, giving them an inherently wider viewing angle.

You’ll often notice images becoming distorted or losing their colors when tilting an LCD or when you view it from different angles. However, many LCDs now include technology to compensate for this – specifically In-Plane Switching (IPS).

LCDs with IPS are significantly brighter than standard LCDs and offer viewing angles that are on-par with OLEDs.OLED vs LCD - Who is better at Viewing Angles?

LCDs have been on the market much longer than OLEDs, so there is more data to support their longevity. On average LCDs have proven to perform for around 60,000 hours (2,500) days of operation.

With most LCDs you can expect about 7 years of consistent performance. Some dimming of the backlight has been observed but it is not significant to the quality of the display.

You must also consider OLED’s vulnerability to image burn-in. The organic material in these displays can leave a permanent afterimage on the display if a static image is displayed for too long.

So depending on how your OLED is used, this can greatly affect its lifespan. An OLED being used to show static images for long periods of time will not have the same longevity as one displaying dynamic, constantly moving images.OLED vs LCD - Which one last longer?

There is not yet a clear winner when it comes to lifespans between LCD and OLED displays. Each have their advantages depending on their use-cases. It’s a tie!

lifetime of lcd displays made in china

This is turning into something of a series, but following on from my postings on the state of the LCD TV panel market in Japan and Korea, now it"s time to take a look at what"s going on in one of the world"s biggest markets for LCD TVs – and just about everything –, China.

Although the recent tough times have led to both the Korean giants, LG and Samsung, delaying their plans to open LCD plants in China – and rumours in China suggest this may lead to a shelving of such plans –, the Chinese LCD panel business is booming.

In the first quarter of this year China overtook Japan as an LCD panel manufacturing country. It"s still behind the true giants of the industry, South Korea and Taiwan, but as they say, it"s working on that.

The biggest Chinese TV manufacturers, BOE Technology Group and TCL Group, have recently started operations at their own large-panel LCD panel plants, and plan to boost production further, meaning that LCD production in China next year will be double this year"s level.

Yes, government incentives may have seen explosive growth of 30% in the Chinese flatscreen TV market last year, so far this year there has been much slower growth. To lure more customers in, Chinese manufacturers are turning to innovative technologies.

Last year Hisense became the first company in China to launch a full-LED-lit 3D TV, and is also introducing "smart" internet-connected sets. This year – in fact, in the past few weeks - it has rolled out what it calls "The world"s first personalised smart TV", in the form of its I"TV model.

It"s a different take on the tablet device concept, in which TV capability is firmly to the fore, with a range of features including the ability to stream either live broadcasts or recorded content from the home TV to the I"TV or a smartphone.

Along with internet and gaming capability, that"s all made possible by the spread of technical expertise within the company: as it says, "Development of I"TV depended on efforts of a number of in-house researchers, with Hisense Electric as the general designer, Hisense Media Networks as the developer of the support platform and application store, Hisense Communication as the developer of the software operating system and Hisense Broadband Multimedia Technology as the developer of the multi-screen interactivity.

"Thanks to the in-house industrial ecological chain through a collaboration across multiple divisions and cross-sector cooperative development, Hisense was able to build technology clusters based on a combination of system software, cloud computing, internet applications, artificial intelligence, industrial design and operational services and complete development of the personalised smart TV in a short time."

Hisense chairman Zhou Houjian – that"s him above, with the I"TV – says that "The new product, a result of "micro innovation and major revolution", brings to fruition my childhood dream and is the revolutionary product that I have waited a lifetime to produce."

He expects the concept to be something of a "game-changer" in the Chinese TV market, making the home TV nothing more than a "terminal" for a whole range of similar personal devices able to stream TV from it using cloud computing facilities.

Meanwhile, the boom in LCD panel production capacity in China, and the slowing domestic demand for TVs, threatens to further exacerbate the global oversupply in the market.

However, although BOE and TCL have only just started making large-screen displays, both have plans to switch some production to the smaller, more intricate panels for handheld devices. And that acquisition of knowledge and capability will pose a threat to technology the Japanese and Korean companies have taken many years to develop.

lifetime of lcd displays made in china

Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.

Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).

From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.

From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.

Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.

From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.

Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.

LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch

Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).

Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.

a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments

Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.

lifetime of lcd displays made in china

Leyard Europe EverCare™ Lifetime Limited Warranty covers Leyard Europe DLU, TVF and AT Series LED video wall displays and Leyard Europe Complete™ LED video walls packages from these series. It is designed to deliver total assurance for our customers while reducing their lifetime cost of ownership, and to demonstrate Leyard Europe’s profound confidence in our product and our Service Organization’s ability to deliver.

The Leyard Europe Evercare Lifetime Limited Warranty is comprehensive, covering the product as long as the end customer continues to own and use it in a fixed location. It covers the entire product from controller to sub-pixel, including every component in between.

Leyard Europe has been designing, building, deploying and supporting display products in Reutlingen (Germany) and Presov (Slovakia) for nearly 30 years. During this time we have built a professional services and systems engineering organization spanning the European region, backed by engineering, manufacturing and service specialists in our European locations. Our confidence in our products, deep expertise within our team and mission to serve our customers allow us to offer and deliver this exceptional warranty.

Lifetime is a long time, so we need to know where your video wall is installed. Please register your Leyard Europe display solution within 60 days of installation so we can best serve you and your video wall.