1.5 tft display power consumption manufacturer
There is rapidly increasing demand for wide viewing angle TFT display modules,at present,wide viewing angle TFT display modules include MVA(Multi-domain Vertical Alignment) and IPS(In-Plane Switching) and O-Film TFT,comparing with MVA and IPS TFT technology,O-Film TFT is the most cost-effective products,what’s more,MVA and IPS TFT is more popular for consumer products,such as tablet and smart phone,most of them are not good for industrial grade products.
Most of the TFT-LCD are used in industrial market.However, TN-LCD disadvantage is obvious grayscale reverse phenomenon,which means the display should be the higher the gray level the brighter in theory,from zero gray scale (black) to 255 gray scale (white).when the liquid crystal display is at a certain angle, it is possible to see the low gray level is brighter than the high gray level.This phenomenon is called grayscale reverse.
O Film TFT module can increase the viewing angle and improve the grayscale reverse.The image is a comparison of normal TFT and O Film TFT.Left is normal TFT module, when viewed over 6 o"clock direction-the optimal viewing angle,normal TFT will show the problem of grayscale reverse.However, when O Film TFT also exceeds the optimal viewing angle,the problem has been improved.Therefore, O Film TFT is one best choice for wide viewing angles in the industrial field.
Focus Displays offers a wide range of standard full color TFT displays. 64 million unique colors, high brightness, sharp contrast, -30C operating temperature, and fast response time are all good descriptions of a TFT display. This is why TFT technology is one of the most popular choices for a new product.
Thin Film Transistor (TFT) display technology can be seen in products such as laptop computers, cell phones, tablets, digital cameras, and many other products that require color. TFT’s are active matrix displays which offers exceptional viewing experiences especially when compared to other passive matrix technologies. The clarity on TFT displays is outstanding; and they possess a longer half-life than some types of OLEDs and range in sizes from less than an inch to over 15 inches.
CCFL’s are still available, but are becoming a legacy (obsolete) component. TFT displays equipped with a CCFL require higher MOQs (Minimum Order Quantities) than displays with LED backlights.
The majority of TFT displays contain a touch panel, or touch screen. The touch panel is a touch-sensitive transparent overlay mounted on the front of the display glass. Allowing for interaction between the user and the LCD display.
Some touch panels require an independent driver IC; which can be included in the TFT display module or placed on the customer’s Printed Circuit Board (PCB). Touch screens make use of coordinate systems to locate where the user touched the screen.
Resistive touch panels are the lowest cost option and are standard equipment on many TFT modules. They are more common on smaller TFT displays, but can still be incorporated on larger modules.
Contrast ratio, or static contrast ratio, is one way to measure the sharpness of the TFT LCD display. This ratio is the difference between the darkest black and the brightest white the display is able to produce. The higher the number on the left, the sharper the image. A typical contrast ratio for TFT may be 300:1. This number ratio means that the white is 300 times brighter than the black.
TFT LCD displays are measured in inches; this is the measurement of the diagonal distance across the glass. Common TFT sizes include: 1.77”, 2.4”, 2.8”, 3”, 4.3”, 5”, 5.7”, 5.8”, 7”, 10.2”, 12.1 and 15”.
As a general rule, the larger the size of the glass the higher the cost of the display, but there are exceptions to this rule. A larger display may be less expensive than a smaller display if the manufacture produces higher quantities of the larger displays. When selecting your color display, be sure to ask what the cost is for one size smaller and one size larger. It may be worth modifying your design requirements.
TFT resolution is the number of dots or pixels the display contains. It is measured by the number of dots along the horizontal (X axis) and the dots along the vertical (Y axis).
The higher the resolution, the more dots per square inch (DPI), the sharper the display will look. A higher resolution results in a higher cost. One reason for the increase in cost is that more driver chips are necessary to drive each segment.
Certain combinations of width and height are standardized and typically given a name and a letter representation that is descriptive of its dimensions. Popular names given to the TFT LCD displays resolution include:
Transmissive displays must have the backlight on at all times to read the display, but are not the best option in direct sunlight unless the backlight is 750 Nits or higher. A majority of TFT displays are Transmissive, but they will require more power to operate with a brighter backlight.
Transflective displays are readable with the backlight off provided there is enough ambient light. Transflective displays are more expensive than Transmissive also there may be a larger MOQ for Transflective. However, Transflective displays are the best option for direct sunlight.
Drivers update and refresh the pixels (Picture Elements) of a display. Each driver is assigned a set number of pixels. If there are more pixels than a single driver can handle, then an additional drivers are added.
A primary job of the driver is to refresh each pixel. In passive TFT displays, the pixel is refreshed and then allowed to slowly fade (aka decay) until refreshed again. The higher the refresh frequency, the sharper the displays contrast.
The controller does just what its name suggest. It controls the drivers. There is only one controller per display no matter how many drivers. A complex graphic display with several thousand pixels will contain one controller and several drivers.
The TFT display (minus touch screen/backlight) alone will contain one controller/driver combination. These are built into the display so the design engineer does not need to locate the correct hardware.
If you do not see a Thin Film Transistor (TFT) Display module that meets your specifications, or you need a replacement TFT, we can build a custom TFT displays to meet your requirements. Custom TFTs require a one-time tooling fee and may require higher MOQs.
Ready to order samples for your TFT design? Contact one of our US-based technical support people today concerning your design requirements. Note: We can provide smaller quantities for samples and prototyping.
TFT (thin-film-transistor) display is a form of Liquid Crystal Display with a thin film transistor attached to each pixel. TFT LCD displays are popular these days owing to their high brightness, slim/thin outline, lower cost, wide temperature range and low power consumption. The ability to deliver sharp images also add to their popularity in applications ranging from smartphones, wearables, TVs, handheld video game systems and navigation systems, among others. As per the application requirements, these color LCD display modules can be customized in a wide range of sizes, resolutions, interfaces, screen types, and so on. Since there are several customization options available with TFT liquid crystal display modules, it often becomes a daunting task for the customers to choose the right one. This post throws light on choosing the right customization options available with color LCD display module.
TFT LCD displays, which deliver millions of high-contrast, clear and bright color pixels, are available in varied options to meet a wide range of application requirements. Make a wise section after considering the following.
Choose the right Screen Type: TN (Twisted Nematic), Multi-domain Vertical Alignment, IPS (in-plane switching) are the common types of TFT displays. Choose TN displays for appliances to basic interfaces for smaller projects, while MVA can be used for applications requiring extended interaction. It is extremely important to choose the right type of screen considering the requirements of your applications. Talk to your custom display screen manufacturer regarding the type of screen that best fits your applications
Size: Color LCD display modules are manufactured in varied sizes as per the industrial requirements. For instance, mobile phone display manufacturers usually require 1.5 to 2.5 inch LCD displays, whereas other handheld instrument manufacturers usually go for 3.5 to 3.9 inches display. A few amongst the other sizes available include 5.7, 8.4, 10.4, 15, 17, 19, and 21 inches. The cost of the custom TFT display module varies as per the size.
Backlight Options: Again, the backlight options vary considering the applications in which the TFT panels are being used. The most popularly used types of backlight option for TFT display nowadays is LED (light-emitting diode). LED backlighting is also chosen for small TFT displays. Consult your custom display screen manufacturer pertaining to the backlighting options available.
Other than the ones listed above, it is important to choose the right resolution and the type of interfaces among CCIR, I2C, LVDS, MIPI, SPI, USB, and VRGB among others when specifying your requirements to custom display screen manufacturer.
Owing to their ability to display up to 16.7 million colors and capability to offer the best picture quality, the demand for TFT LCD display is on the rise in the last few years. Unlike the LCD monitors, TFT monitors can be viewed from any angle, which also add to their popularity. Partnering with a leading global manufacturer and supplier of LCD module like Microtips Technology will help in solving all your queries related to TFT LCD display. Such prominent manufacturers with their several years of experience in the market provide the right display that best meets your application requirements to the fullest.
This display module features high resolution, low power consumption, wide-angle and easy wiring. With a small size of 1.54”, it offers 240x240 resolution. The module employs the IPS screen, which performs excellently in the view angle (80/80/80/80). It supports SPI(4-wire) communication mode and GDI port (work with main-controllers with GDI port), plug, and play. This product can be used in many display applications: waveform monitor display, electronic gift box, electronic weather decorations, etc.
The 1.54” LCD module can be powered by 3.3V~5V, and the maximum power consumption is about 24Ma. It is compatible with multiple main-controllers like UNO, Leonardo, ESP32, ESP8266, FireBeetle M0, etc. When working with M0, the GDI interface should be used, which could effectively reduce wiring steps. Besides, there is an onboard MicroSD card slot for displaying more pictures.
Maclight display is specialized in custom lcd display, our custom lcd display including custom segment lcd, graphic lcd display with TN, STN, VATN lcd, FSTN display mode, customized TFT LCD display panel and tft module, semi-custom oled display module with PCB type. Our custom display solution would be based on mechanism dimensions, display mode, display pattern &resolution, connection interface, display luminance, power consumption, cost budget...
For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory STM32\STM32F103RB\User\GUI_DEV\GUI_Paint.c(.h)
Image buffer part of the window filling color: the image buffer part of the window filled with a certain color, generally as a window whitewashing function, often used for time display, whitewashing on a second
Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.
For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory GUI_Paint.c(.h)
Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.
Orient Display sunlight readable TFT displays can be categorized into high brightness TFT displays, high contrast IPS displays, transflective TFT displays, Blanview TFT displays etc.
The brightness of our standard high brightness TFT displays can be from 700 to 1000 nits. With proper adding brightness enhancement film (BEF) and double brightness enhancement film (DBEF) and adjustment of the LED chips, Orient Display high brightness TFT products can achieve 1,500 to 2,000 nits or even higher luminance. Orient Display have special thermal management design to reduce the heat release and largely extend LED life time and reduce energy consumption.
Our high contrast and wide viewing angle IPS displays can achieve contrast ratio higher than 1000:1 which can make readability under strong sunlight with lower backlight luminance. High brightness IPS displays have been widely accepted by our customers with its superb display quality and it has become one of the best sellers in all our display category.Transflective display is an old monochrome display technology but it has been utilized in our color TFT line for sunlight readable application. Orient Display has 2.4” and 3.5” to choose from.
Blanview TFT displays are the new technology developed by Ortustech in Japan. It can provide around 40% of energy consumption for TFT panels which can use smaller rechargeable or disposable batteries and generate less heat. The price is also lower than traditional transflective TFT displays. Orient Display is partnering with the technology inventor to provide 4.3” and 5.0”.
Orient Display can also provide full customized or part customized solutions for our customers to enhance the viewing experience. Orient Display can provide all the different kinds of surface treatments, such as AR (Anti-reflection); AG (Anti-glare), AF (Anti-finger print or Anti-smudge); AS (Anti-smashing); AM (Anti-microbial) etc. Orient Display can also provide both dry bonding (OCA, Optical Clear Adhesive), or wet bonding (OCR, Optical Clear Resin and OCG, Optical Clear Glue) to get rid of light reflective in air bonding products to make the products much more readable under sunlight and be more robust.
Touch panels have been a much better human machine interface which become widely popular. Orient Display has been investing heavy for capacitive touch screen sensor manufacturing capacity. Now, Orient Display factory is No.1 in the world for automotive capacitive touch screen which took around 18% market share in the world automotive market.
Based on the above three types of touch panel technology, Orient Display can also add different kinds of features like different material glove touch, water environment touch, salt water environment touch, hover touch, 3D (force) touch, haptic touch etc. Orient Display can also provide from very low cost fixed area button touch, single (one) finger touch, double finger (one finger+ one gesture) touch, 5 finger touch, 10 points touch or even 16 points touch.
Considering the different shapes of the touch surface requirements, Orient Display can produce different shapes of 2D touch panel (rectangle, round, octagon etc.), or 2.5D touch screen (round edge and flat surface) or 3D (totally curved surface) touch panel.
Considering different strength requirements, Orient Display can provide low cost chemical tampered soda-lime glass, Asahi (AGC) Dragontrail glass and Corning high end Gorilla glass. With different thickness requirement, Orient Display can provide the thinnest 0.5mm OGS touch panel, to thickness more than 10mm tempered glass to prevent vandalizing, or different kinds of plastic touch panel to provide glass piece free (fear) or flexible substrates need.
Of course, Orient Display can also offer traditional RTP (Resistive Touch Panel) of 4-wire, 5-wire, 8-wire through our partners, which Orient Display can do integration to resistive touch screen displays.
Engineers are always looking for lower cost, faster, more convenient interfaces to transmit signals and to accept data and commands. The numbers of available interfaces available in the market can be dazzling. Orient Display follows market trends to produce various kind of interfaces for our customers to choose.
Genetic Interfaces: Those are the interfaces which display or touch controller manufacturers provide, including parallel, MCU, SPI(,Serial Peripheral Interface), I2C, RGB (Red Green Blue), MIPI (Mobile Industry Processor Interface), LVDS (Low-Voltage Differential Signaling), eDP ( Embedded DisplayPort) etc. Orient Display has technologies to make the above interface exchangeable.
High Level Interfaces: Orient Display has technologies to make more advanced interfaces which are more convenient to non-display engineers, such as RS232, RS485, USB, VGA, HDMI etc. more information can be found in our serious products. TFT modules, Arduino TFT display, Raspberry Pi TFT display, Control Board.
This is a very low-power LCD clock, based on an AVR128DA48, capable of running for over three years from a CR2032 button cell, or for ever from a solar cell:
Every minute it also briefly displays the temperature, using the AVR128DA48"s on-chip temperature sensor, and the battery voltage, by using the ADC to read its own supply voltage. There"s also an I2C connection so you can add an external sensor, for example to show the humidity in addition to the other readings.
Although liquid crystal displays (LCDs) are relatively old technology, they still offer several advantages over newer types of display, including low power, low cost, and readability.
I recently bought some Densitron LCD displays on eBay for a few pounds/dollars, and I"d been wanting to try building a low-power clock around them, to see just how low I could get the power consumption. The displays are a standard type, available with compatible pinouts from several manufacturers. They are called static (as opposed to multiplexed), which means that every segment comes to a separate pin on the edge connector. This makes 28 pins for the segments plus three decimal points, a colon, and a common pin, adding up to 33 pins altogether. The displays I"ve found usually have two common pins, and also typically have other special-purpose segments, such as a minus sign, in a 40-pin package.
The displays are usually clear, but when you apply a voltage of about 3.3V between a segment and the common line the segment turns black. The displays I"m using have a reflective backing; they are also available with a translucent backing so you can add a backlight behind them.
There"s one catch; you can"t use a DC voltage to turn on the segments, because this would cause electrolysis to occur which would slowly degrade the display. The solution is to use AC by switching the polarity across the segment at a low frequency; 32Hz is usually recommended. Fortunately this is easy to do in software
Most 40-pin, 33mm row spacing displays should be compatible with this board; here are some I"ve found. These all have 4 digits and 3 decimal points on pins 5 to 27, 29 to 32, and 34 to 37, and commons on 1 and 40, plus a few extra symbols as shown:
Because of the number of interconnections I didn"t fancy prototyping this project by hand, but went straight to designing a PCB in Eagle, and I sent it to PCBWay for manufacture. I tried to make the PCB as general purpose as possible. It caters for any of the displays in the above table; to select which of the extra symbols you want to display you need to fit an 0Ω resistor to the board to act as a link.
The crystal I used is a 32.768kHz 3.2mm x 1.5mm SMD type with an accuracy of 20ppm and a load capacitance of 6pF L - CS), where CL is the load capacitance 6pF, and CS is the stray capacitance which is usually estimated to be 2.5pF on a PCB. This gives C=7pF. I used the closest available value, 6pF.
Alternatively, if you want to power the clock from a 3V solar cell there are holes to allow you to fit a supercapacitor in place of the coin cell; I used a PowerStor 0.47F 5V one
The PCB also includes a 4-pin JST PH socket, providing an I2C interface compatible with Adafruit"s STEMMA system or the Grove system. You can use this to connect a sensor to the board, for example to show the humidity as well as the time and temperature, or you could use it to make the board an I2C slave so it can be used as an I2C display for other projects.
There"s no multiplexing, so to display a segment pattern we just need to write the appropriate value from the segment array, Char[0] to Char[11], to the port corresponding to the digit. Ports D, C, and A provide eight I/O lines each, so these map in a logical way to the seven segments and decimal point in digits 0 to 2. There"s a slight complexity with digit 3 because Port B only has six I/O lines available, so the segment corresponding to bit 6 is provided by PF5. The colon or other symbol is controlled by PF4.
The interrupt service routine first toggles all the I/O lines connected to the LCD segments, and the common connections. Every 32 calls, or every half second, it calculates the current time, and checks whether the buttons are pressed. If the MINS or HRS buttons are pressed it advances the time by a minute or an hour respectively. It then calls the routine DisplayTime() to update the time, or at the end of each minute it calls DisplayVoltage() to display the battery voltage for three seconds, followed by DisplayTemp() to display the temperature for three seconds:
DisplayTime() copies the digits representing the current time to the corresponding output ports, specified by Digit[0] to Digit[3]. It also flashes the colon:
Unlike earlier AVR microcontrollers, where you had to calibrate the temperature sensor, the AVR DA and DB series have been calibrated during manufacture and contain calibration parameters in ROM. The temperature display is therefore pretty accurate without any additional calibration.
The processor spends most of its time in power-down sleep mode, to save power, and is woken up by the 64Hz interrupt from the Real-Time Clock peripheral. I measured the average power consumption at 3.3V for four different clock frequencies:
Usually you"d expect the power consumption to increase with processor clock frequency, so at first sight these figures are puzzling. The explanation is that at higher clock frequencies the time taken to execute the interrupt service routine is shorter, allowing the processor to spend a higher proportion of the time asleep.
The 32.768kHz external crystal oscillator has a low-power mode, and selecting this reduced the average power consumption with a 24MHz clock from 9.5µA to 7.3µA. The AVR128DA48 datasheet doesn"t seem to mention any downside to choosing the low-power mode, so I used this setting.
A CR2032 coin cell has a typical capacity of 225 mAh, so with a consumption of 7.3µA the expected battery life of the clock is 225/0.0073/24/365 or about 3.5 years.
With a 0.47F supercapacitor you can expect a current of 0.47A for 1 second. This gives an expected life of 0.47/7.3x10‑6/60/60 or about 18 hours, which I confirmed by testing it. This should be sufficient to keep the clock running overnight with a suitable solar cell providing power during daylight.
ASI-T-17711A1SPN/D is a 1.77 inch transflective TFT with a resolution of 160 x 128, SPI interface and with a brightness of 110 Nits; viewable in direct sunlight.
ASI-T-20043A5PMN/AY is a 2.0 inch TFT with a resolution of 480 x 360, 3W SPI+16 bit RGB or MIPI interface, IPS all view, with a high brightness of 500 Nits.
ASI-T-240DA8BN/D is a 2.4 inch high brightness TFT with a resolution of 240 X 320, CPU 16-bit interface and with a brightness of 800 Nits; viewable in direct sunlight.
ASI-T-240DA10SMN/AQ is a 2.4 inch high brightness TFT with a resolution of 240 x 320, SPI & MCU interface, IPS all-angle view and with a brightness of 1000 Nits; viewable in direct sunlight. It also features an extra wide operating temperatures of -30 to +80C; perfect for extreme environmental applications.
ASI-T-240DAKBN/D is a 2.4 inch high brightness TFT with a resolution of 240 x 320, MCU interface and with a brightness of 1000 Nits; viewable in direct sunlight.
ASI-T-283DAKCRN/A is a 2.83 inch high brightness TFT with a resolution of 240 x 320, CPU, RGB, SPI interface and with a brightness of 1000 Nits; viewable in direct sunlight
ASI-T-3501RA1EN/A is a 3.5 inch TFT with a resolution of 480 x 640, 18 bit RGB, All View interface and with a brightness of 120 Nits; viewable in direct sunlight
ASI-T-3501RA1EN/D is a 3.5 inch TFT with a resolution of 480 x 640, 18-bit DBI Type B, All View interface and with a brightness of 120 Nits; viewable in direct sunlight
ASI-T-350EA8RCY6/A is a 3.5 inch high brightness TFT with a resolution of 320 x 240, 24-bit Parallel RGB/Serial RGB/CCIR/YUV interface and with a brightness of 850 Nits; viewable in direct sunlight with Capacitive Touch Panel
ASI-T-350EA10SRN/A is a 3.5 inch TFT with a resolution of 320 x 240, SPI & RGB interface and with a high brightness of 1,000 Nits and wide temperature range of -30 - +85 C.