kuman 3.5 tft lcd shield datasheet made in china
Note: There is a film on the LCD, if there is scratch on the film when you receive the item, pls try to remove the film with your finger nail from the corner of the LCD, thanks.
The touchscreen came on time and looks to be in mint condition. My project is to make a Kuman 3.5 TFT lcd marry a Keystudio Mega 2560. I"m about three hours into my weekend now and I"m clearly missing something quite obvious when it comes to lights and action. When I plug the Mega into the hard drive computer port it lights up and when I check the device manager I can see the the Mega is listed in ports com. If I plug the Kuman touchscreen into the Mega the lights go off on the Mega board and the device manager resets to not show the Mega. The Kuman TFT comes with a small cd with libraries and so forth. When I upload the test library it works okay (within the IDE sketch) when I verify, but when I go to upload to the actual board I get this error message. I have searched the Arduino IDE site for these particular devices. I have found several Kuman videos on you tube but for a different style that has only one row of pins on the side. I"ve uploaded every library I can think of or have heard suggested. I suspect this is a simple problem but I may be more simple. I am open to any primary or basic suggestions if you can spare the time. This is the model I"m using. I also have a spare legit Uno lying around and I get the same results. Do I have the pins lined up wrong? They are actually pressed into place, in the photos I just wanted to show you the positions. What am I doing wrong please? Update...well it works if I follow the pin diagrams with leads, add power and change one letter in the code. So I powered it up, I assume the rest of the test programs will follow. * update - turns out the first two pins on the mega are not to be used and then everything lines up and works. I have a slow learning curve.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
The RPi LCD can be driven in two ways: Method 1. install driver to your Raspbian OS. Method 2. use the Ready-to-use image file of which LCD driver was pre-installed.
3) Connect the TF card to the Raspberry Pi, start the Raspberry Pi. The LCD will display after booting up, and then log in to the Raspberry Pi terminal,(You may need to connect a keyboard and HDMI LCD to Pi for driver installing, or log in remotely with SSH)
1. Executing apt-get upgrade will cause the LCD to fail to work properly. In this case, you need to edit the config.txt file in the SD card and delete this sentence: dtoverlay=ads7846.
This LCD can be calibrated through the xinput-calibrator program. Note: The Raspberry Pi must be connected to the network, or else the program won"t be successfully installed.
This module is a 3.5-inch TFT LCD module with “320X480” resolution and 65K color display. It is suitable for Arduino Uno and Mega2560 development boards, and also supports SD card expansion function. It uses 8-bit parallel port communication, and the driver IC is ILI9486.
The 3.5-inch display is a ready-made shield for Arduino Uno, which can also be placed on the Arduino Mega. The pins of this shield are designed to be easily installed on the Arduino. The bad point about these modules is that they use all Arduino Uno pins.
my_lcd.Fill_Triangle(x_spec+i*side_len-1,y_spec+(i+1)*h_len-1,x_spec+side_len/2+i*side_len-1,y_spec+i*h_len-1,x_spec+(i+1)*side_len-1,y_spec+(i+1)*h_len-1);
my_lcd.Fill_Triangle(x_spec+i*side_len-1,y_spec+(5-i)*h_len-1,x_spec+side_len/2+i*side_len-1,y_spec+(4-i)*h_len-1,x_spec+(i+1)*side_len-1,y_spec+(5-i)*h_len-1);
my_lcd.Draw_Line(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34));
my_lcd.Draw_Rectangle(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34));
my_lcd.Draw_Round_Rectangle(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),5);
my_lcd.Draw_Triangle(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34));
my_lcd.Fill_Round_Rectangle(my_lcd.Get_Display_Width()/2-1-120+1, my_lcd.Get_Display_Height()/2-1-60+1, my_lcd.Get_Display_Width()/2-1+120-1, my_lcd.Get_Display_Height()/2-1+60-1,5);
page1_btn.initButton(&tft, tft.width() / 2. , tft.height() / 2. - (1.*btnHeight + margin), 2 * btnWidth, btnHeight, WHITE, GREEN, BLACK, "SENSOR", 2);
page3_btn.initButton(&tft, tft.width() / 2., tft.height() / 2. + (1.*btnHeight + margin), 2 * btnWidth, btnHeight, WHITE, GREEN, BLACK, "PARAMETER", 2);
tft.drawRoundRect(tft.width() / 2. - 1.5 * btnWidth, tft.height() / 2. - (1.5 * btnHeight + 2 * margin), 2 * btnWidth + btnWidth, 3 * btnHeight + 4 * margin, 10, GREEN);
plus_btn.initButton(&tft, tft.width() / 2. - btnWidth / 2. , 60 + 3 * 4 + 6 * 8 + (btnWidth - 30), btnWidth - 20, btnWidth - 30, WHITE, GREEN, BLACK, "+", 5);
minus_btn.initButton(&tft, tft.width() / 2. + btnWidth / 2. + margin, 60 + 3 * 4 + 6 * 8 + (btnWidth - 30), btnWidth - 20, btnWidth - 30, WHITE, GREEN, BLACK, "-", 5);
if (bColor != 255) tft.fillRect(x - nbChar * 3 * tsize - marg, y - nbChar * 1 * tsize - marg, nbChar * 6 * tsize + 2 * marg, nbChar * 2 * tsize + 2 * marg, bColor);
The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.
I bought online this LCD Touchscreen Kuman SC3A-NEW-UK. It uses ILI9486 drivers, but it didn"t include any instructions manual, and kumantech.com seems to be devoid of complete technical documentation about SC3A-NEW-UK model.
Just in case it wasn"t noticable: I am trying to make a "Hello World" for my SC3A-NEW-UK"s LCD Touchscreen from an Arduino UNO board. In other words: just print "Hello World" to see if it works.
This compiled in Arduino IDE, no problem, but I still don"t know if it will work well with my screen. I am also confused about initialization of the TFT object and how would I have to wire the LCD screen to the Arduino depending on this initialization:
...i mean, my LCD screen has CS and RESET pins, but what is DC supposed to be here? (in this context, I don"t think it stands for "Direct Current"... but there"s no DC pin reference in my LCD screen written "AS IS"... ?? This brings me more confusion...
...specially having in mind that I don"t know how am I supposed to wire the LCD screen to the Arduino yet. It seems the LCD pins have been designed to fit in directly to the Arduino board without thinking too much about it (like the shape is the same), but that would make the screen getting all the Arduino UNO"s pins for itself, so I don"t think so...
...so, powering the screen shouldn"t be a big deal, but, how am I supposed to connect everything else? I am completely misguided about how am I supposed to interact with the screen from Arduino code... what is RS pin for? Should I use 4-bit or 8-bit mode? (I think 4-bit would imply connecting 4 digital pins for the screen, and 8-bit the whole 8 pins from screen to the Arduino UNO board)? Should I use LCD_RD and LCD_WR? Well you have a picture of my confusion.
Even though I know how to control Input/Output in Arduino code to interact with analog/digital input and output pins at will with C++ in Arduino code (but even so, I think I"m still an Arduino n00b), this LCD screen"s physical interface is very confusing to me...
PD: I have read somewhere that this SC3A-NEW-UK Touchscreen is made to shield Arduino MEGA boards (by fitting the PINs directly into it), but mine is an Arduino UNO Board! (perhaps I shouldn"t have bought This LCD model, then?)... but I have sets of wires, pinboards and stuff... I don"t want to give up the idea of harnessing this LCD screen using an Arduino UNO. I don"t care about shielding feature, I just want to wire it and make it work. I will figure out how to shield electronics later on.
Based on VE7JRO"s answer, I managed to map the connections by seeing where the connections would go if I just fit the connections shielding the Arduino UNO, the way VE7JRO suggested:
I put NONE for A5 input, because that pin of LCD screen doesn"t have any name on it. There are another ones without name as well, that I didn"t include in this table. I believe (perhaps I"m wrong believing it, I don"t know) that those pins without name have no use.
I still don"t know much of the details about what pins do what for the screen, but I have read somewhere that LCD_D0 to LCD_D7 are meant to receive digital data in some kind of 8-bit parallel mode. But I also heard that there is a 4-bit mode. If I could use that mode with this screen, I would be able to have 4 free digital pins for anything else...
I tested VE7JRO"s code. LCD Screen did draw the interface as expected. But buttons didn"t respond. I found out the code sample needs further calibration.
The fifth parameter is supposed to be the resistance measured between LCD_D6 and LCD_RS with the screen unplugged. Unfortunately, my multimeter can"t measure it for some reason (I put it in 2000 Ohms mode for reading resistance: I always get "1", the same than when I don"t connect anything... like if multimeter"s contacts aren"t working well, I don"t know)... so I left the default 300 value.
In this article, we are looking at the benefits of looking for Chinese TFT LCD manufacturers. Instead of resorting to other manufacturing means, opting for the Chinese is a much wiser and lucrative choice. If you are looking for Chinese LCD manufacturers, you should start with STONE Tech.
Handbags, wallets, phone cases, and other similar items have become the favorites of wholesalers and bulk buyers. These products are directly sold to end consumers. However, the fascinating thing about the Chinese production and manufacturing business is that it does not only cover the end-consumer products. Rather, you can also acquire raw and basic materials needed for the further manufacturing of goods and products. One such product is LCD displays.
LCD displays have become something of a necessity in today’s world of tech advancement. Many things in our daily life have been automated, and are operated using an interactive user interface. For these kinds of machines and gadgets, LCD displays are typically necessary.
In this article, we are looking at the benefits of looking for Chinese LCD manufacturers. Instead of resorting to other manufacturing means, opting for the Chinese is a much wiser and lucrative choice. If you are looking for Chinese LCD manufacturers, you should start with Stoneitech.com.
STONE Tech is an LCD manufacturer located in Beijing, China. It was founded back in 2010, and it has been developing TFT LCD display modules ever since. These modules can be used for a variety of different machines including electric equipment, precision instruments, and civil electronics etcetera.
One of the main benefits that you get with Stoneitech.com is that there is a wide range of diverse products that you can purchase. For example, there are three different application types that you can choose from which include the Industrial Type, Advanced Type, and Civil Type. Similarly, there is a range of different sizes that you can choose from. There are 11 different sizes that you can buy, ranging from the smallest 3.5-inch display to the large 15.1-inch one. The same goes for the Android series which where you can choose between 4.5-inch and 31.5-inch displays.
The same applies to LCD displays. When you save up on costs when buying LCD displays, you can set a lower price for the whole machine or gadget that you are producing.
When it comes to LCD modules, the orders are not received by the hundreds or thousands as is the case with other smaller products such as handbags and wallets etcetera. One module can cost around $250, and it is for this reason that the dynamics are a little different with this business. That is why STONE offers single pieces for sale as well as multiple pieces. This encourages smaller businesses to make their purchases since they can easily purchase as many modules as they like. As long as you meet the limit stated by the supplier, you are good to go.
In the case of LCD modules, this benefit relates to a reselling business. For example, if you are planning on buying some modules to use in your machines etcetera, then there is not a very suitable opportunity for you to expand. If you want to start a business in another country, you will have to open a manufacturing unit there so that your products can be produced and then get sold. Or, you will have to transport your final products to the other country in order to run your business.
However, if you are buying the LCD modules to resale at a profit, you can use the Chinese markets to grow your business. You can buy the modules at a reduced price and then sell them at a profit in a different area or city where the people will be willing to pay more.
Now that we have seen the benefits of choosing Chinese manufacturers for LCD modules, let us narrow it down a bit and look at why you should choose STONE specifically.
With STONE, you get the option of buying a range of different-sized modules. If your business deals in making different electronics and machines that require panels of different sizes, you don’t have to look at multiple suppliers to fulfill your need. You could be making some products that require 3.5-inch panels, while some of your machines could be needing 15.1-inch modules. Instead of taking the trouble to go to different suppliers, you can enjoy an all-in-one experience from STONE.
One of the main things that you have to look at in any supplier is the level of reliability and trust. This is usually determined by the level of experience and the time that the supplier has spent in the market. STONE was founded in 2010 and has been producing LCD modules for the past 10 years.
If you are looking to buy LCD modules in bulk, look no further than the Middle Kingdom. China has become the hub of mass manufacturing and is the favorite spot for wholesalers and business owners.
In case you need some convincing about buying from the Chinese, we have compiled a list of benefits that you can enjoy when looking for TFT LCD manufacturers in China.
For the 3.5 inch I had to use examples and libraries found in the download called "SC3A" over at the Kumantech website in their "Support & Tutorials" section.
Once I downloaded "3.5inch_Arduino_ILI9486_V1.0", I copied the libraries from the "Install libraries" folder to my Arduino libraries folder and ran the test in "Example01-Simple test" folder and it worked straight away.