stm32 2.4 tft lcd quotation

Ahh yeah look at that! If you look closely, top right of the LCD, that’s obviously a flex connector for a resistive touch overlay (4 contacts running to the 4 sides of the LCD overlay).

Agreed! I will be picking one up. I’ve been happy developing for the stm32f4discovery (and other stm32 chips) with gcc, openocd and gdb. It is all free.

The STM32F4 cores are pretty well supported by libopencm3 and Code Sourcery and summon-arm-toolchain both build working toolchains and openOCD supports the stlink natively now.

A fair number of inexpensive baseboards/motherboards/accessories have also appeared for earlier versions. I hope Olimex puts out a couple nice STM32F429/427 boards.

I can see there is only a STLINK usb connector on board, so there is even no FS to expect. beside HS, I suppose does mean High Speed (480mbps). but HS anyway needs a separate physical layer USB chip for addition to STM32F4 chip and most likely this is chip is not present on this board anyway, because this is STM32F4+LCD+SDRAM demoboard and there is no need for USB at all.

The data brief bullet-points “USB OTG with micro-AB connector”. Looks like the micro-usb is on the underside, sticking out at the bottom of the photo. With matching T/H mounting tabs on the topside, labelled USB USER. But like you said, the STM32F4 requires an external PHY for HS, and it seems unlikely they’d include one on this board.

I think Farnell’s 21€ will be accurate, as ST’s suggested USD price is $24. The placeholders for the STM32F429I-DISCO on element14 (a division of Farnell) and mouser show $42, which I think predates the later ST announcement. I think the ST announced $24 will hold, and the distributor prices will match that, as they have in the past.

I wouldn’t expect TI to hack profits from their calculator range, and HP have always been expensive, but ST could easily change their format to calculator-friendly. Clamshell design, LCD & battery in top half, CPU & keypad in bottom half, expansion pins to left / right of keypad makes a self contained unit.

HP Palm – Love the idea, hate the baguette (french bread loaf) layout. If I could get custom key covers, and surface-mount key switches, I’d be designing my own low-profile keypad to go with an LCD module. Top side keypad, bottom side CPU / RAM / USB / LCD driver / power regulation / expansion port.

Great find, thanks! Man, could they have buried the details on that guy any farther down into the document? I can’t help but feel like a quick pointer in the LCD section to “oh by the way there’s a touch screen, here’s how to talk to it” would have been a good idea.

It’s certainly useable in any other project where you have an onboard LCD controller. Especially any other project that happens to use a STM32F4. What difference would it have made if it had an external controller? Surely it’d have been on the same PCB. Were you hoping for a removeable SPI-interfaced module?

Look in the UM1670 user manual, paragraph 4.8: the tft includes an ILI9341 controller. The ILI9341 has it’s own graphics ram inside, it is not mapped into the STM32 address space. It is connected to the STM32 via a parallel bus. The ILI9341 and similar controllers are common on cheap chinese tfts. So it is no problem to source similar tfts for your final product after developing on the discovery board.

UM1670 in paragraph 4.8 also says that “The TFT LCD is a 2.41″ display of 262 K colors. Its definition is QVGA (240 x 320 dots) and is directly driven by the STM32F429ZIT6 using the RGB protocol”. ILI9341 has multiple modes of operation including direct RGB/HSYNC/VSYNC mode which bypasses internal GRAM. I don’t have the board yet but I assume display buffer is located in external SDRAM which is also on the board. The whole point of this kit is to show TFT and SDRAM interface in new STM32F4x9.

I’ve checked this discovery board firmware available from ST’s site (“STM32F429 discovery firmware package UM1662” number: STSW-STM32138, btw. finding it is a bit difficult – ST’s site is terrible):

They are using FreeRTOS, FatFs, STemWinLibrary which is ST’s version of Segger’s emWin graphic library and STM32F4xx_StdPeriph_Driver v1.2.1 which includes F429/439 support (FMC, LTDC and DMA2D added).

Check again martin. Those lines have pullups to vdd and are connected to cpu pins. I have this board for some time and I can confirm that lcd is driven by lcd controller from cpu and frame buffer is in external dram which is also on the board.

stm32 2.4 tft lcd quotation

ER-TFT028-4 is 240x320 dots 2.8" color tft lcd module display with ILI9341 controller and optional capacitive touch panel and 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.8"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

stm32 2.4 tft lcd quotation

ER-TFT028-4 is 240x320 dots 2.8" color tft lcd module display with ILI9341 controller and optional capacitive touch panel and 4-wire resistive touch panel,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8-bit,9-bit,16-bit,18-bit parallel,3-wire,4-wire serial spi interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.8"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

stm32 2.4 tft lcd quotation

HMI module (Human-Machine Interface) with a color LCD TFT 2.4" display with a resolution of 320x240 px. It is equipped with a resistive touch panel that ensures user interaction with the system being built. The panel has a built-in microcontroller that controls the display, a microSD card slot and Flash memory The module communicates with an external driver via the UART interface, thanks to which it can work with popular development kits, such as Arduino, Raspberry Pi or STM32. It is powered with a voltage of 5 V using the attached module and cables. all projects where a user control panel is required, e.g. on production lines.

Designing the appearance and functionality of the graphical user interface (GUI) with Nextion NX3224T024 is fast and intuitive thanks to the dedicated Nextion Editor graphic editor. It allows you to prepare the interface using universal blocks, buttons or sliders, thanks to which the user saves time and significantly speeds up the device design process. The project is uploaded to devices via the UART interface. The exact editor"s manual is available on the manufacturer"s website.

stm32 2.4 tft lcd quotation

The STM32F429/439 lines offer the performance of the Cortex-M4 core (with floating point unit) running at 180 MHz while reaching lower static power consumption (Stop mode) versus STM32F405/415/407/F417.

Performance: At 180 MHz, the STM32F429/439 deliver 225 DMIPS/608 CoreMark performance executing from Flash memory, with 0-wait states thanks to ST’s ART Accelerator. The DSP instructions and the floating point unit enlarge the range of addressable applications.

Power efficiency: ST’s 90 nm process, ART Accelerator and the dynamic power scaling enables the current consumption in run mode and executing from Flash memory to be as low as 260 µA/MHz at 180 MHz. In Stop mode, the power consumption is 120 µA typical, which is 3 times lower versus STM32F405/415/407/F417.

Graphics: The new LCD-TFT controller interface with dual-layer support takes advantage of Chrom‑ART Accelerator™. This graphics accelerator is performing content creation twice as fast as the core alone. As well as efficient 2-D raw data copy, additional functionalities are supported by the Chrom-ART Accelerator such as image format conversion or image blending (image mixing with some transparency). As a result, the Chrom-ART Accelerator boosts graphics content creation and saves processing bandwidth of the MCU core for the rest of the application.

•The STM32F439 integrates a crypto/hash processor providing hardware acceleration for AES-128, -192 and -256, with support for GCM and CCM, Triple DES, and hash (MD5, SHA-1 and SHA-2)

The STM32F429 and STM32F439 portfolio provides from 512-Kbyte Flash to 2-Mbyte dual-bank Flash, 256-Kbyte SRAM and from 100 to 216 pins in packages as small as 5 x 5.1 mm. With such memory integration, the need for external memory is reduced, allowing smaller, safer and low-emission PCB designs.

stm32 2.4 tft lcd quotation

240 x 320 resolution, 65K RGB colors, clear and colorful displaying effect, SPI interface, minimizes required IO pins, supports controller boards like Raspberry Pi/Arduino/STM32, Comes with development resources (examples for Raspberry Pi/Arduino/STM32)

stm32 2.4 tft lcd quotation

This is a third release of combined soldering iron controller for Hakko T12 tips and 858D rework station based on STM32 micro controller. This time the oled display was replaced by ili9341 TFT one with SPI interface. There are several display variants (2.2", 2.4", 2.8" or 3.2") in the market, so you can chose the one that satisfies your requirements, I used 2.2" display. The touch screen feature is not used in this project, but you can use display with touch screen panel.

To decrease the controller price and increase its reusability, the complete schematics was split in 3 separate PCBs. The main PCB conntains the main low-voltage components: stm32 blackpill board, op-amps, voltage dc-dc converter and regulator, mosfets that manage the soldering iron and Hot Air Gun fan. The AC power PCB contains the high-voltage part of the project: the triac, optional high-voltage relay and opto-couplers that creates galvanic isolation from the main board. These boards connected via 5-wire interface cable. The display PCB contains the TFT display and two rotary encoders.

JP11 is a optional DIP-type connector for SD-card reader on the TFT display. This connector is used to load external files to the SPI flash memory IC. Just solder the pin-header here.

The schematics of the board is very simple. It contains two rotary encoders and TFT display. Also, you can see the mosfet that manages the TFT display brightness.

This controller is working with ili9341 based TFT displays only. You can select the display size (2.2", 2.4", 2.8" or 3.2"). The display has sufficient resolution 320x240 to show required information. I used the 2.2" one to fit the case.

The main component is the BlackPill board. You can use the pure STM32F401CCU6 micro controller if you wish to create compact variant of the soldering station.

Connect this DC-DC converter consequently with b0505 isolated cobverter: 24v -> MP1584 DC-DC converter -> b0505 -> ams1117 gnd you get isolated power supply for your stm32 micro controller. This king of power supply is isolated and low-noise power that ensure accurate ADC temperature readings.

This project is based on the BlackPill board with STM32F401CCU6 micro controller. To flash prebuilt firmware to the controller the st link v2 programmer and ST link utility are required.

Download the STM32 ST-LINK utility fromstsite. Install the utility in your system. Launch the ST-LINK utility, connect the programmer to the 4pins SWD interface of BlackPill board, press "connect" button. The main window should display the memory content of the BlackPill board. Press flash button to write the firmaware to the BlackPill board.

As you can see, the main AC power after fuse that can be installed on the pannel of the case, goes into JP3 socket on the high voltage board. You can connect main power switch to the JP6 socket or short it oins and completely remove main switch if do not like to use it. JP4 and JP2 sockets are used to connect to the GX16-8 connector of the Hot Air Gun. The power to the heater goes from JP4 socket and all other wires connected to the JP2. Earth ground should be connected to the Earth ground of AC power (not shown here). JP8 and JP9 connectors should be connected together. Soldering Iron GX12-5 connector should be connected to JP1 and JP5 sockets. JP10 used to connect optional automatic mode switch. Using this switch you can disconnect the Hot Air Gun completely from the controller when it is not needed. JP3 should be connected to the J1 connector on the TFT board. This is 14-wires connector to attach the display and rotary encoders.

Using JP11 you can connect the SD-CARD installed on TFT display to the controller when going to upload some files from SD-CARD to SPI FLASH. For instance, it can be used whel upload localization data files.

The ambient temperature value (internal units, "amb."). This is a temperature of the sensor installed into the iron handle. In normal conditions, the value should be near 2048.

Prebuilt version of the controller software can be downloaded from the github repository. To upload this hex file into controller, you can use stm32 st-linkutility.

In order to use your native language, the NLS data should be uploaded into SPI FLASH. To do so, you have to:Connect your SD-CARD reader (the TFT display board has one) to the JP11 connector via 4 wires: SD_CS (Chip Select), MOSI, MISO, SCK. If you have not implemet the JP11 socket, remember following: SD_CS (Chip Select) - PB12, MOSI - PB15, MISO - PB14, SCK - PB10.