tft lcd vs ips lcd vs super amoled pricelist
Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.
TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.
OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.
Samsung came up with its unique 18:5:9 AMOLED display for the Galaxy S8. LG picked up its old trusted IPS LCD unit for the G6’s display. These display units have been familiar to the usual Indian smartphone buyer. Honor, on the other hand, has just unveiled the new Honor 8 Pro for the Indian market that ships with an LTPS LCD display. This has led to wonder how exactly is this technology different from the existing ones and what benefits does it give Honor to craft its flagship smartphone with. Well, let’s find out.
The LCD technology brought in the era of thin displays to screens, making the smartphone possible in the current world. LCD displays are power efficient and work on the principle of blocking light. The liquid crystal in the display unit uses some kind of a backlight, generally a LED backlight or a reflector, to make the picture visible to the viewer. There are two kinds of LCD units – passive matrix LCD that requires more power and the superior active matrix LCD unit, known to people as Thin Film Transistor (TFT) that draws less power.
The early LCD technology couldn’t maintain the colour for wide angle viewing, which led to the development of the In-Plane Switching (IPS) LCD panel. IPS panel arranges and switches the orientation of the liquid crystal molecules of standard LCD display between the glass substrates. This helps it to enhance viewing angles and improve colour reproduction as well. IPS LCD technology is responsible for accelerating the growth of the smartphone market and is the go-to display technology for prominent manufacturers.
The standard LCD display uses amorphous Silicon as the liquid for the display unit as it can be assembled into complex high-current driver circuits. This though restricts the display resolution and adds to overall device temperatures. Therefore, development of the technology led to replacing the amorphous Silicon with Polycrystalline Silicon, which boosted the screen resolution and maintains low temperatures. The larger and more uniform grains of polysilicon allow faster electron movement, resulting in higher resolution and higher refresh rates. It also was found to be cheaper to manufacture due to lower cost of certain key substrates. Therefore, the Low-Temperature PolySilicon (LTPS) LCD screen helps provide larger pixel densities, lower power consumption that standard LCD and controlled temperature ranges.
The AMOLED display technology is in a completely different league. It doesn’t bother with any liquid mechanism or complex grid structures. The panel uses an array of tiny LEDs placed on TFT modules. These LEDs have an organic construction that directly emits light and minimises its loss by eradicating certain filters. Since LEDs are physically different units, they can be asked to switch on and off as per the requirement of the display to form a picture. This is known as the Active Matrix system. Hence, an Active Matrix Organic Light Emitting Diode (AMOLED) display can produce deeper blacks by switching off individual LED pixels, resulting in high contrast pictures.
The honest answer is that it depends on the requirement of the user. If you want accurate colours from your display while wanting it to retain its vibrancy for a longer period of time, then any of the two LCD screens are the ideal choice. LTPS LCD display can provide higher picture resolution but deteriorates faster than standard IPS LCD display over time.
An AMOLED display will provide high contrast pictures any time but it too has the tendency to deteriorate faster than LCD panels. Therefore, if you are after greater picture quality, choose LTPS LCD or else settle for AMOLED for a vivid contrast picture experience.
Over time, the purpose of using mobile phones or Smartphones has changed. Comparatively, it has now become a basic necessity of every individual. Smartphone has dramatically transformed the lives of individuals. It has now become a mini-computer that everyone carries in their pocket. Instead, you can have multiple things at your fingertips in a few seconds. While there are plenty of things to look for, AMOLED vs OLED is also a part of it.
This article will introduce you to AMOLED vs OLED display technologies. Then, we will discuss the properties of both display technologies, followed by the difference between AMOLED vs OLED.
AMOLED stands for Active Matrix Organic Light Emitting Diode. This type of display is generally for large platforms. It contains TFT, which further consists of a storage capacitor. It also works on the same principle as OLED displays.
AMOLED offers no restriction on the size of the display. The power consumption of AMOLED is much less than other display technologies. The AMOLED provides incredible performance. It is thinner, lighter, and more flexible than any other display technology like LED, or LCD technology.
The AMOLED display is widely used in mobiles, laptops, and televisions as it offers excellent performance. Therefore, SAMSUNG has introduced AMOLED displays in almost every product. For example, Full HD Super AMOLED in Samsung Galaxy S4 and Samsung Galaxy Note 3, Super AMOLED in Samsung Galaxy S3, HD Super AMOLED in Samsung Galaxy Note, and HD Super AMOLED Plus in Samsung Galaxy S3. Apart from this, it is also used in AMOLED vs OLED creating the following:
So far, we have discussed OLED and AMOLED display technologies. Now, we will look at some of the differences between OLED and AMOLED display technology:
OLED comprises thin layers of the organic component, which emits light when the current passes through it. In this technology, each pixel transmits its own light. On the other side, AMOLED consists of an additional layer of thin-film transistors (TFTs). In AMOLED, the storage capacitors are used to maintain the pixel states.
While the technology is different among various manufacturers, Samsung’s edge AMOLED displays use plastic substrates with poly-Si TFT technology similar to how LG uses it in their POLED technology. This technology is what makes the possibility to build curved displays using an active-matrix OLED panel.
OLED display much deeper blacks as compared to the AMOLED displays. You cannot see the screen in AMOLED display under direct sunlight. The AMOLED display quality is much better than the OLEDs as it contains an additional layer of TFTs and follows backplane technologies.
These organic compounds are present between the protective layers of glass or plastic. Comparatively, AMOLED comprises an active matrix of OLED pixels along with an additional layer of TFTs. This extra layer is responsible for controlling the current flow in each pixel.
The OLED display offers a high level of control over pixels. Hence, it can be turned off completely, resulting in an excellent contrast ratio compared to the AMOLED displays and less power consumption. On the other side, AMOLED has faster refresh rates than OLEDs. Also, they offer a tremendous artificial contrast ratio as each pixel transmits light but consumes more power than OLEDs.
OLED displays are comparatively much thinner compared to the LCDs. Hence, it provides more efficient and bright presentations. In addition, OLED offers support for large display sizes compared to the traditional LCDs. AMOLEDs remove the limitation of display sizes. one can fit it into any display size.
Putting all the points mentioned above in view, the key difference to understand appropriately is that POLED is an OLED display with a plastic substrate. On the other hand, AMOLED is Samsung’s word for its display technology which is mainly for marketing. Therefore, most phone manufacturers having AMOLED displays mean that they are using Samsung displays. It is as simple as that. To add to that, all the curved display technology is made possible because of the usage of plastic substrate.
So, based on the points mentioned above, the difference between OLED and AMOLED displays, you can choose any of the two display technology at your convenience. Both are good, offer excellent performance, and are customised according to your requirements.
The AMOLED display has a higher quality than OLEDs since it has an additional layer of TTs and uses backplane technologies. When compared to OLED screens, AMOLED displays are far more flexible. As a result, they are substantially more expensive than an OLED display.
Window to the digital world, the display is one of the first seen features when selecting a smartphone, so a show must be good, and an AMOLED display offers the same. Offering a great viewing experience, here are the top 3 AMOLED screen smartphones available in the market right now:
Realme 8 Pro features a 6.4-inch Super AMOLED display with 411 PPI and a 2.5D curved display. It runs on Snapdragon 720G, bundled with Adreno 618 and 6GB of RAM. On the rear, the Realme 8 Pro has a quad-camera setup with 108-megapixels primary sensor, 8-megapixel ultra-wide angle sensor, 2-megapixel macro sensor, and a 2-megapixel monochrome sensor.
Coming to the front, it has a 16-megapixel selfie camera housed in the punch-hole display. It comes with a 4,500 mAh battery that supports Super Dart fast charging, with 100 per cent coming in just 47 min. The Realme 8 Pro is one of the best segments with a Super AMOLED FHD+ display. Media lovers will enjoy this phone with its deep blacks and vibrant colours.
The Xiaomi Mi 11 Lite runs on Snapdragon 732G chipset bundled with Adreno 618 GPU and up to 8GB RAM. The display front comes with a 6.55-inch AMOLED display with HDR 10+ support and 402 PPI.
The cameras have a triple rear camera setup with a 64-megapixel primary sensor, 8-megapixel ultra-wide angle sensor, and a 5-megapixel macro sensor. In addition, it has a 16-megapixel selfie camera housed in the punch-hole display on the front. It has a 4,250 mAh battery with 33W fast charging with USB Type-C. With the support for HDR 10+, the AMOLED display on the Mi 11 Lite is a treat for all media enthusiasts.
OPPO has recently launched the Oppo Reno 6 Pro with MediaTek’s Density 1200 chipset coupled with Mali-G77 MC9 GPU and up to 12GB of RAM. In addition, it comes with a 6.55-inch curved AMOLED FHD+ display with support for HDR 10+ and an Oleophobic coating.
On the rear, it comes with a quad-camera setup with a 64-megapixel primary sensor, an 8MP ultra-wide angle sensor, a 2-megapixel macro sensor, and a 2-megapixel depth sensor. In addition, it has a 32-megapixel selfie camera integrated inside the punch-hole on display on the front. It comes with a 4,500 mAh battery that supports 65W Super VOOC fast charging and can charge the phone 100 per cent in just 31 minutes. Since it comes with an FHD+ curved AMOLED display on the display front, it is a treat for gamers and media consumption lovers.
Major smartphone manufacturers attempt to provide their consumers with the most delicate devices possible that incorporate the most up-to-date technologies. In AMOLED vs OLED, AMOLED is a type of OLED and a more prominent example of both OLED and POLED, so there’s no debate about which is superior.
TFT and LCD are two different types of electronic displays used in computers, TVs, and smartphones. However, they are not as different as you might think. Let’s start with what those abbreviations mean.
A key weakness of TFT panels is that they do not have wide viewing angles, so they are better suited to displays that require you to view head-on. This can be a good or a bad thing, depending on your needs. For example, the narrower viewing angles mean people sitting or standing around you are less likely to be able to snoop on what you are doing on your mobile phone.
TFT panels are cheaper to manufacture, but they also consume much more power than regular LCD panels. Lastly, they have poorer sunlight visibility. You will find TFT displays on feature phones, smart feature phones, and low-end Android phones.
LCD: This is an abbreviation for “liquid crystal display”. It is a flat panel display with wider viewing angles compared to TFT. They also have lower power consumption and so deliver much better battery life than their TFT counterparts.
In summary, while TFT panels have some distinct advantages, they fall short in other areas and so their use have been limited to low end phones, from feature phones to entry-level Android phones. Plastic feels inferior to touch than glass, which means that TFT screens don’t get to feature much on mid-range and premium devices.
As we see improvements to TFT technology, we will see them deployed on higher end devices over time. In 2022, Samsung used TFT displays in its mid-range Galaxy A13 and Galaxy A23. Perhaps those improvements are happening already.
For now, LCD is the most widely used display type in modern smartphones. At the very top end, we have premium flagships using OLED and AMOLED displays.
TFT displays are higher quality components than regular LCD displays. TFT displays are sharper, brighter, and refresh better than LCD panels. However, they have weaknesses that make them unsuitable for higher end phones.
AMOLED panels have all the benefits of OLED screens, which means they are better than LCD panels. They are expensive though, and so are used in high-end smartphones only.
These are improved versions of AMOLED screens and were developed by Samsung. They are also thinner. The name explains it: think of Super AMOLED as AMOLED on steroids.
By now you know that (one of) AMOLED"s Achilles" heel is readability in direct sunlight. But Samsung"s been working hard to fix that with its new Super AMOLED technology. Techblog took the display to task by pitting the Samsung Galaxy S (4-inch, 480 x 800 pixel Super AMOLED) against the HTC Desire (3.7-inch 480 x 800 pixel AMOLED) and Sony Ericsson XPERIA X10 (4-inch, 480 x 854 pixel TFT LCD). It"s clear from the video embedded after the break that the LCD still has the edge in the harsh Greek sun, but the Super AMOLED certainly makes a much stronger showing than its AMOLED sib. In fact, differences in visibility between the LCD and Super AMOLED are often indistinguishable, like the picture above. That"ll be good news for us just as soon as Samsung can start meeting demand... regardless of what Stevie J has to say. Check the video after the break and be sure to click the source for some more side-by-side pics, including a few taken indoors where that Super AMOLED display really shines.
Let’s first start with the basics. An LCD or Liquid Crystal Display is a type of panel that uses liquid crystals which are back-lit. It’s one of the most common and widely-used technology since they are easily manufactured and doesn’t cost a lot to produce.
Short for Thin Film Transistor, TFT LCD is basically an improved version of LCD wherein an extra transistor and capacitor are both attached to each pixel. This is the same active matrix (AM) technology used in AMOLED displays which we’ll discuss later on.
Because of this, TFT LCDs are able to produce images with better contrast than the usual LCDs. They are also still cheap to produce. Although, viewing angles generally aren’t that impressive while color reproduction is a bit altered. They are now commonly used in low-end devices.
If TFT has one sheet of transistor supporting each pixel, LG Display’s IPS or In-Plane Switching LCDs make use of two transistors for each pixel which is then illuminated with a stronger backlight. This results to way better viewing angles than TFT and a more faithful color reproduction. Any image viewed within 178 degree from all four sides will retain clear details.
One downside, though, is that since it uses a more powerful backlight, it requires slightly more power from the battery as compared to handsets that use non-LCD panels. These are used in majority of handsets today.
A Super-Twisted Nematic display is a type of monochrome passive-matrix LCD that has an even lower cost of production than TFT LCDs. It also consumes less power than both the TFT and IPS displays which is a good thing, but the issue here is that it shows lower image quality and slower response time than TFT panels.
Additionally, STN LCDs can also be reflective which makes it visible even under direct sunlight. Because of this, it is being used for inexpensive phones and informational screens of digital devices.
TFD stands for Thin Film Diode which was made as a sort of getting the best of two things. It has the low power consumption of STN LCDs but since it doesn’t yield very impressive picture quality, it made use of the imaging performance of a TFT LCD.
A product of Japan Display Inc. (JDI), IPS Neo addresses the issues involved in manufacturing liquid crystal panels such as affecting the production yield due to unwanted foreign particles included in the process.
There’s a detailed scientific process that involves using highly transmissive liquid crystals but basically, because of this unique method from the company, IPS Neo displays give off a higher contrast with flexible viewing angles. This implementation also makes it possible to mass produce these panels which was previously thought to be difficult.
This specific type of screen is from Samsung Mobile Display and was introduced back in 2010. Super PLS (Plane to Line Switching) were made for LCDs and is an improvement to LG Display’s IPS panels. The company claims that Super PLS is ‘about 100%’ better when talking about viewing angles — putting it in the league of AMOLED displays. It is also 10% brighter which would greatly benefit users when used outdoors.
The Active-Matrix Organic Light-Emitting Diode, or simply AMOLED, was started to be used in mobile phones in 2008. As we’ve mentioned earlier, it uses active matrix but this time for OLED pixels which is simply another term for thin-film display technology . It basically generates light upon electrical activation after combining with a TFT array and has all the characteristics of an OLED display like lively color reproduction, high brightness and sharpness, and is lightweight.
One of the noticeable differences of using AMOLED screens is its deep blacks. This is possible since OLED displays are always off by default unlike LCD panels that are always back-lit. Apart from showing true blacks (since the cell is basically turned off), it also consumes less power.
These are some of the reasons why it quickly gained popularity on high-end devices and because of this, more manufacturers have made the switch from TFT LCDs. Of course, it also has some cons to it. AMOLED displays don’t perform as well as back-lit LCDs under direct sunlight and diode degradation happens over time since they are organic.
Rounding up the list is the Super AMOLED display that we commonly see on mid- to high-end Samsung handsets. They are obviously an advanced counterparts of AMOLED displays from the South Korean company and are built with touch sensors right on the display unlike implementing a separate touch-sensitive layer. This move makes Super AMOLED displays one of the thinnest displays available for electronic devices.
In addition, they are also a lot more responsive when compared to AMOLED displays. Performance outdoors where there is direct sunlight has also improved here while requiring even less power from the battery.
An acronym for In-Plane Switching, IPS is an LCD technology. Patented in the early 1990s, IPS was designed to overcome issues associated with TN TFT displays, such as limited viewing angles and low-quality color reproduction. To this day, IPS liquid-crystal screens are widely used in mid-range and high-end consumer electronics.
Unlike the previous generation of LCDs, IPS products don"t display aftertouch marks on the screen. Furthermore, IPS displays feature twice as many transistors per pixel and a more robust backlight than their predecessors. As a result, In-Plane Switching displays deliver bolder colors, which can be viewed from different angles.
First-generation IPS products faced three main shortcomings in comparison to TFT LCDs: higher energy consumption, higher prices, and slower response time. As companies such as Hitachi and LG have invested heavily in this technology, the response time was reduced in later IPS generations, and there have been further developments, such as improved color accuracy.
In 2010, a competing technology was introduced by Samsung. Available at a lower cost, the brand’s Super PLS (Plane-to-Line Switching) pledges to provide better image quality, more brightness, and an even greater viewing angle flexibility. Other competitors have entered the market since then, such as AU Optronics" AHVA (Advanced Hyper-Viewing Angle), which offers higher refresh rates.
IPS monitors are typically preferred by photographers, designers, editors, and other individuals who rely on color accuracy for their tasks. Price and power consumption, however, are still significantly higher for IPS technology, which makes TN TFT (twisted nematic thin-film transistor) LCDs still be attractive options.
When it comes to smartphones, the display choice stands between IPS, OLED, and AMOLED. Although there is no clear winner in this competition, each technology has advantages and disadvantages, which may help you choose your next phone. Generally speaking, OLED and AMOLED produce more vibrant colors and blacker-looking blacks, allow for the use of the always-on clock display feature, and are also more power-efficient. IPS displays, on the other hand, may provide more color accuracy, are not as pricey, and don"t pose the risk of display burn-in.