arduino counter lcd display made in china

I don"t know where the term "PLJ-6LED 2004A" came from since the first half (PLJ-6LED) seems to refer to a 6-digit, 7-segment display that does not show up on the Sainsmart website. The second half (2004A) comes up often since it refers to the 20x4 display size. It doesn"t much matter which one you are using since they are all more or less the same as long as the row of pins is at the upper left (and not the lower left) corner of the pc board.

I assume you mean the "New Liquidcrystal library" which is a replacement for, not an accessory to, the library that comes with the Arduino IDE. You must follow the installation instructions for this library which you can get here. I believe they also come packaged with the library. Basically you have to remove all traces of any other LiquidCrystal libraries for this one to compile.

I assume that you are referring to this ArduinoInfo page, and to the device he calls "I2C LCD DISPLAY VERSION 1:" That tutorial is actually the one I used when I was tinkering with my adapter which looks like that one and also came on a slow boat from the far east, Banggood in my case.

You also have to deal with the connections between the chip on the IC and the pins that go to the LCD module. These are specific to each pc board and the tutorial gives you the constructor that goes with each of the boards pictured. There is a "guesser" sketch available here if you want to go that route.

arduino counter lcd display made in china

I bought a cheap LCD screen for a project I"m working on to get my feet wet with programming LCD touch screens before buying a "full-size" screen. But i can not find any libraries or code to get it to display anything. Ive downloaded the new ILI9341 library along with 4-5 other ones and can not get it to display or do anything.

Im using an UNO with THIS display. i would prefer to use my mega but this one says it is only for the UNO. I tried the links on the eBay page for getting it to work but they didn"t seem to help.

here are three codes I"m trying to run that upload but don"t display. Im extremely new to this and i had a fellow programmer give me a hand but can not figure it out.

arduino counter lcd display made in china

i"m very young in the world of Arduino and i"m having a serious problem with the LCD QC2004A and Arduino Mega because whatever i write in alphanumeric, is translated to chinese language and i really don"t know what to do to change it.

arduino counter lcd display made in china

For more information on how to use the Simulink Support Package for Arduino Hardware to run a Simulink model on an Arduino board, see Getting Started with Arduino Hardware.

4. Select Enable code generation for Dashboard blocks and click Launch Display Configuration Setup to launch the wizard to configure the dashboard properties.

Due to memory constraints, the appplication dashboard may not deploy on an Arduino board with less memory than the Arduino Mega 2560 board, such as an Arduino Uno or Arduino Leonardo. To ensure successful deployment of the application dashboard on your Arduino board, consider deploying a dashboard that consists of only a few dashboard elements. For example, you can remove the Display dashboard block to reduce the memory size of the application dashboard.

Arduino Due board does not support the touch screen capability of the Adafruit ILI 9341 Touch TFT display. To try this example on the Arduino Due board, use one of these solutions:

2. Use a custom display that the Arduino Due board supports. Note that you must configure this display in the Display properties section of the Configuration Parameters dialog box.

Implement the dashboard on a custom graphical display. Make sure to appropriately configure the Dashboard properties in the Configuration Parameters dialog box. Use the datasheet for the display to ensure you make the correct connections with your Arduino board.

Implement the dashboard panel on the LCD display of your choice for the Arduino Based Smart Watering of Plants example. Use the Display and Push Button blocks to implement the dashboard.

arduino counter lcd display made in china

We have used Liquid Crystal Displays in the DroneBot Workshop many times before, but the one we are working with today has a bit of a twist – it’s a circle!  Perfect for creating electronic gauges and special effects.

LCD, or Liquid Crystal Displays, are great choices for many applications. They aren’t that power-hungry, they are available in monochrome or full-color models, and they are available in all shapes and sizes.

Today we will see how to use this display with both an Arduino and an ESP32. We will also use a pair of them to make some rather spooky animated eyeballs!

Waveshare actually has several round LCD modules, I chose the 1.28-inch model as it was readily available on Amazon. You could probably perform the same experiments using a different module, although you may require a different driver.

There are also some additional connections to the display. One of them, DC, sets the display into either Data or Command mode. Another, BL, is a control for the display’s backlight.

The above illustration shows the connections to the display.  The Waveshare display can be used with either 3.3 or 5-volt logic, the power supply voltage should match the logic level (although you CAN use a 5-volt supply with 3.3-volt logic).

Another difference is simply with the labeling on the display. There are two pins, one labeled SDA and the other labeled SCL. At a glance, you would assume that this is an I2C device, but it isn’t, it’s SPI just like the Waveshare device.

This display can be used for the experiments we will be doing with the ESP32, as that is a 3.3-volt logic microcontroller. You would need to use a voltage level converter if you wanted to use one of these with an Arduino Uno.

The Arduino Uno is arguably the most common microcontroller on the planet, certainly for experiments it is. However, it is also quite old and compared to more modern devices its 16-MHz clock is pretty slow.

The Waveshare device comes with a cable for use with the display. Unfortunately, it only has female ends, which would be excellent for a Raspberry Pi (which is also supported) but not too handy for an Arduino Uno. I used short breadboard jumper wires to convert the ends into male ones suitable for the Arduino.

Once you have everything hooked up, you can start coding for the display. There are a few ways to do this, one of them is to grab the sample code thatWaveshare provides on their Wiki.

The Waveshare Wiki does provide some information about the display and a bit of sample code for a few common controllers. It’s a reasonable support page, unfortunately, it is the only support that Waveshare provides(I would have liked to see more examples and a tutorial, but I guess I’m spoiled by Adafruit and Sparkfun LOL).

Open the Arduino folder. Inside you’ll find quite a few folders, one for each display size that Waveshare supports. As I’m using the 1.28-inch model, I selected theLCD_1inch28folder.

Once you do that, you can open your Arduino IDE and then navigate to that folder. Inside the folder, there is a sketch file namedLCD_1inch28.inowhich you will want to open.

When you open the sketch, you’ll be greeted by an error message in your Arduino IDE. The error is that two of the files included in the sketch contain unrecognized characters. The IDE offers the suggestion of fixing these with the “Fix Encoder & Reload” function (in the Tools menu), but that won’t work.

You can see from the code that after loading some libraries we initialize the display, set its backlight level (you can use PWM on the BL pin to set the level), and paint a new image. We then proceed to draw lines and strings onto the display.

Unfortunately, Waveshare doesn’t offer documentation for this, but you can gather quite a bit of information by reading theLCD_Driver.cppfile, where the functions are somewhat documented.

After uploading the code, you will see the display show a fake “clock”. It’s a static display, but it does illustrate how you can use this with the Waveshare code.

This library is an extension of the Adafruit GFX library, which itself is one of the most popular display libraries around. Because of this, there isextensive documentation for this libraryavailable from Adafruit.  This makes the library an excellent choice for those who want to write their own applications.

As with the Waveshare sample, this file just prints shapes and text to the display. It is quite an easy sketch to understand, especially with the Adafruit documentation.

The sketch finishes by printing some bizarre text on the display. The text is an excerpt from The Hitchhiker’s Guide to the Galaxy by Douglas Adams, and it’s a sample of Vogon poetry, which is considered to be the third-worst in the Galaxy!

Here is the hookup for the ESP32 and the GC9A01 display.  As with most ESP32 hookup diagrams, it is important to use the correct GPIO numbers instead of physical pins. The diagram shows the WROVER, so if you are using a different module you’ll need to consult its documentation to ensure that you hook it up properly.

The TFT_eSPI library is ideal for this, and several other, displays. You can install it through your Arduino IDE Library Manager, just search for “TFT_eSPI”.

There is a lot of demo code included with the library. Some of it is intended for other display sizes, but there are a few that you can use with your circular display.

To test out the display, you can use theColour_Test sketch, found inside the Test and Diagnostic menu item inside the library samples.  While this sketch was not made for this display, it is a good way to confirm that you have everything hooked up and configured properly.

A great demo code sample is theAnimated_dialsketch, which is found inside theSpritesmenu item.  This demonstration code will produce a “dial” indicator on the display, along with some simulated “data” (really just a random number generator).

One of my favorite sketches is the Animated Eyes sketch, which displays a pair of very convincing eyeballs that move. Although it will work on a single display, it is more effective if you use two.

The first thing we need to do is to hook up a second display. To do this, you connect every wire in parallel with the first display, except for the CS (chip select) line.

The Animated Eyes sketch can be found within the sample files for the TFT_eSPI library, under the “generic” folder.  Assuming that you have wired up the second GC9A01 display, you’ll want to use theAnimated_Eyes_2sketch.

The GC9A01 LCD module is a 1.28-inch round display that is useful for instrumentation and other similar projects. Today we will learn how to use this display with an Arduino Uno and an ESP32.

arduino counter lcd display made in china

This post is an introduction to the Nextion display with the Arduino. We’re going to show you how to configure the display for the first time, download the needed resources, and how to integrate it with the Arduino UNO board. We’ll also make a simple graphical user interface to control the Arduino pins.

Nextion is a Human Machine Interface (HMI) solution. Nextion displays are resistive touchscreens that makes it easy to build a Graphical User Interface (GUI). It is a great solution to monitor and control processes, being mainly applied to IoT applications.

The Nextion has a built-in ARM microcontroller that controls the display, for example it takes care of generating the buttons, creating text, store images or change the background. The Nextion communicates with any microcontroller using serial communication at a 9600 baud rate.

To design the GUI, you use the Nextion Editor, in which you can add buttons, gauges, progress bars, text labels, and more to the user interface in an easy way. We have the 2.8” Nextion display basic model, that is shown in the following figure.

Connecting the Nextion display to the Arduino is very straightforward. You just need to make four connections: GND, RX, TX, and +5V. These pins are labeled at the back of your display, as shown in the figure below.

You can power up the Nextion display directly from the Arduino 5V pin, but it is not recommended. Working with insufficient power supply may damage the display. So, you should use an external power source. You should use a 5V/1A power adaptor with a micro USB cable. Along with your Nextion display, you’ll also receive a USB to 2 pin connector, useful to connect the power adaptor to the display.

The best way to get familiar with a new software and a new device is to make a project example. Here we’re going to create a user interface in the Nextion display to control the Arduino pins, and display data.

The user interface has two pages: one controls two LEDs connected to the Arduino pins, and the other shows data gathered from the DHT11 temperature and humidity sensor;

We won’t cover step-by-step how to build the GUI in the Nextion display. But we’ll show you how to build the most important parts, so that you can learn how to actually build the user interface. After following the instructions, you should be able to complete the user interface yourself.

Additionally, we provide all the resources you need to complete this project. Here’s all the resources you need (be aware that you may need to change some settings on the user interface to match your display size):

We’ll start by adding a background image. To use an image as a background, it should have the exact same dimensions as your Nextion display. We’re using the 2.8” display, so the background image needs to be 240×320 pixels. Check your display dimensions and edit your background image accordingly. As an example, we’re using the following image:

At this moment, you can start adding components to the display area. For our project, drag three buttons, two labels and one slider, as shown in the figure below. Edit their looks as you like.

All components have an attribute called objname. This is the name of the component. Give good names to your components because you’ll need them later for the Arduino code. Also note that each component has one id number that is unique to that component in that page. The figure below shows the objname and id for the slider.

You should trigger an event for the touchable components (the buttons and the slider) so that the Arduino knows that a component was touched. You can trigger events when you press or when you release a component.

Our second page will display data from the DHT11 temperature and humidity sensor. We have several labels to hold the temperature in Celsius, the temperature in Fahrenheit, and the humidity. We also added a progress bar to display the humidity and an UPDATE button to refresh the readings. The bBack button redirects to page0.

Notice that we have labels to hold the units like “ºC”, “ºF” and “%”, and empty labels that will be filled with the readings when we have our Arduino code running.

Once the GUI is ready, you need to write the Arduino code so that the Nextion can interact with the Arduino and vice-versa. Writing code to interact with the Nextion display is not straightforward for beginners, but it also isn’t as complicated as it may seem.

A good way to learn how to write code for the Arduino to interact with the Nextion display is to go to the examples folder in the Nextion library folder and explore. You should be able to copy and paste code to make the Arduino do what you want.

The first thing you should do is to take note of your components in the GUI that will interact with the Arduino and take note of their ID, names and page. Here’s a table of all the components the code will interact to (your components may have a different ID depending on the order you’ve added them to the GUI).

Finally, you need a function for the bUpdate (the update button). When you click this button the DHT temperature and humidity sensor reads temperature and humidity and displays them on the corresponding labels, as well as the humidity on the progress bar. That is the bUpdatePopCallback() function.

In this post we’ve introduced you to the Nextion display. We’ve also created a simple application user interface in the Nextion display to control the Arduino pins. The application built is just an example for you to understand how to interface different components with the Arduino – we hope you’ve found the instructions as well as the example provided useful.

In our opinion, Nextion is a great display that makes the process of creating user interfaces simple and easy. Although the Nextion Editor has some issues and limitations it is a great choice for building interfaces for your electronics projects. We have a project on how to create a Node-RED physical interface with the Nextion display and an ESP8266 to control outputs. Feel free to take a look.

arduino counter lcd display made in china

The Arduino family of devices is features rich and offers many capabilities. The ability to interface to external devices readily is very enticing, although the Arduino has a limited number of input/output options. Adding an external display would typically require several of the limited I/O pins. Using an I2C interface, only two connections for an LCD character display are possible with stunning professional results. We offer both a 4 x 20 LCD.

The character LCD is ideal for displaying text and numbers and special characters. LCDs incorporate a small add-on circuit (backpack) mounted on the back of the LCD module. The module features a controller chip handling I2C communications and an adjustable potentiometer for changing the intensity of the LED backlight. An I2C LCD advantage is that wiring is straightforward, requiring only two data pins to control the LCD.

A standard LCD requires over ten connections, which can be a problem if your Arduino does not have many GPIO pins available. If you happen to have an LCD without an I2C interface incorporated into the design, these can be easily

The LCD displays each character through a matrix grid of 5×8 pixels. These pixels can display standard text, numbers, or special characters and can also be programmed to display custom characters easily.

Connecting the Arduino UNO to the I2C interface of the LCD requires only four connections. The connections include two for power and two for data. The chart below shows the connections needed.

The I2C LCD interface is compatible across much of the Arduino family. The pin functions remain the same, but the labeling of those pins might be different.

Located on the back of the LCD screen is the I2C interface board, and on the interface is an adjustable potentiometer. This adjustment is made with a small screwdriver. You will adjust the potentiometer until a series of rectangles appear – this will allow you to see your programming results.

The Arduino module and editor do not know how to communicate with the I2C interface on the LCD. The parameter to enable the Arduino to send commands to the LCD are in separately downloaded LiquidCrystal_I2C library.

Before installing LiquidCrystal_I2C, remove any other libraries that may reside in the Arduino IDE with the same LiquidCrystal_I2C name. Doing this will ensure that only the known good library is in use. LiquidCrystal_I2C works in combination with the preinstalled Wire.h library in the Arduino editor.

To install the LiquidCrystal_I2C library, use the SketchSketch > Include Library > Add .ZIP Library…from the Arduino IDE (see example). Point to the LiquidCrystal_I2C-master.zip which you previously downloaded and the Library will be installed and set up for use.

Several examples and code are included in the Library installation, which can provide some reference and programming examples. You can use these example sketches as a basis for developing your own code for the LCD display module.

There may be situations where you should uninstall the Arduino IDE. The reason for this could be due to Library conflicts or other configuration issues. There are a few simple steps to uninstalling the IDE.

The I2c address can be changed by shorting the address solder pads on the I2C module. You will need to know the actual address of the LCD before you can start using it.

Once you have the LCD connected and have determined the I2C address, you can proceed to write code to display on the screen. The code segment below is a complete sketch ready for downloading to your Arduino.

The code assumes the I2C address of the LCD screen is at 0x27 and can be adjusted on the LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x27,16,2); as required.

Similar to the cursor() function, this will create a block-style cursor. Displayed at the position of the next character to be printed and displays as a blinking rectangle.

This function turns off any characters displayed to the LCD. The text will not be cleared from the LCD memory; rather, it is turned off. The LCD will show the screen again when display() is executed.

Scrolling text if you want to print more than 16 or 20 characters in one line then the scrolling text function is convenient. First, the substring with the maximum of characters per line is printed, moving the start column from right to left on the LCD screen. Then the first character is dropped, and the next character is displayed to the substring. This process repeats until the full string has been displayed on the screen.

The LCD driver backpack has an exciting additional feature allowing you to create custom characters (glyph) for use on the screen. Your custom characters work with both the 16×2 and 20×4 LCD units.

A custom character allows you to display any pattern of dots on a 5×8 matrix which makes up each character. You have full control of the design to be displayed.

To aid in creating your custom characters, there are a number of useful tools available on Internet. Here is a LCD Custom Character Generator which we have used.

arduino counter lcd display made in china

This library enables you to use Hardware-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM to pins.

This library enables you to use ISR-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM any GPIO pin.

Small low-level classes and functions for Arduino: incrementMod(), decToBcd(). strcmp_PP(), PrintStr, PrintStrN, printPad{N}To(), printIntAsFloat(), TimingStats, formUrlEncode(), FCString, KString, hashDjb2(), binarySearch(), linearSearch(), isSorted(), reverse(), and so on.

Cyclic Redundancy Check (CRC) algorithms (crc8, crc16ccitt, crc32) programmatically converted from C99 code generated by pycrc (https://pycrc.org) to Arduino C++ using namespaces and PROGMEM flash memory.

Various sorting algorithms for Arduino, including Bubble Sort, Insertion Sort, Selection Sort, Shell Sort (3 versions), Comb Sort (4 versions), Quick Sort (3 versions).

Date, time, timezone classes for Arduino supporting the full IANA TZ Database to convert epoch seconds to date and time components in different time zones.

Clock classes for Arduino that provides an auto-incrementing count of seconds since a known epoch which can be synchronized from external sources such as an NTP server, a DS3231 RTC chip, or an STM32 RTC chip.

Useful Arduino utilities which are too small as separate libraries, but complex enough to be shared among multiple projects, and often have external dependencies to other libraries.

Fast and compact software I2C implementations (SimpleWireInterface, SimpleWireFastInterface) on Arduino platforms. Also provides adapter classes to allow the use of third party I2C libraries using the same API.

Enables Bluetooth® Low Energy connectivity on the Arduino MKR WiFi 1010, Arduino UNO WiFi Rev.2, Arduino Nano 33 IoT, Arduino Nano 33 BLE and Nicla Sense ME.

Fully Asynchronous UDP Library for RASPBERRY_PI_PICO_W using CYW43439 WiFi with arduino-pico core. The library is easy to use and includes support for Unicast, Broadcast and Multicast environments.

The last hope for the desperate AVR programmer. A small (344 bytes) Arduino library to have real program traces and to find the place where your program hangs.

An Arduino library that takes input in degrees and output a string or integer for the 4, 8, 16, or 32 compass headings (like North, South, East, and West).

Directly interface Arduino, esp8266, and esp32 to DSC PowerSeries and Classic security systems for integration with home automation, remote control apps, notifications on alarm events, and emulating DSC panels to connect DSC keypads.

This library enables you to use Hardware-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM.

This library enables you to use ISR-based PWM channels on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.), using DxCore, to create and output PWM any GPIO pin.

Small and easy to use Arduino library for using push buttons at INT0/pin2 and / or any PinChangeInterrupt pin.Functions for long and double press detection are included.Just connect buttons between ground and any pin of your Arduino - that"s itNo call of begin() or polling function like update() required. No blocking debouncing delay.

Arduino library for controlling standard LEDs in an easy way. EasyLed provides simple logical methods like led.on(), led.toggle(), led.flash(), led.isOff() and more.

OpenTherm Library to control Central Heating (CH), HVAC (Heating, Ventilation, Air Conditioning) or Solar systems by creating a thermostat using Arduino IDE and ESP32 / ESP8266 hardware.

An ESP8266/ESP32-AT library for Arduino providing an easy-to-use way to control ESP8266-AT/ESP32-AT WiFi shields using AT-commands. For AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, SIPEED_MAIX_DUINO and RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc.) boards using ESP8266/ESP32 AT-command shields.

ezTime - pronounced "Easy Time" - is a very easy to use Arduino time and date library that provides NTP network time lookups, extensive timezone support, formatted time and date strings, user events, millisecond precision and more.

A library for implementing fixed-point in-place Fast Fourier Transform on Arduino. It sacrifices precision and instead it is way faster than floating-point implementations.

The GCodeParser library is a lightweight G-Code parser for the Arduino using only a single character buffer to first collect a line of code (also called a "block") from a serial or file input and then parse that line into a code block and comments.

Arduino library for the Flysky/Turnigy RC iBUS protocol - servo (receive) and sensors/telemetry (send) using hardware UART (AVR, ESP32 and STM32 architectures)

An Arduino library to control the Iowa Scaled Engineering I2C-IRSENSE ( https://www.iascaled.com/store/I2C-IRSENSE ) reflective infrared proximity sensor.

Convinient way to map a push-button to a keyboard key. This library utilize the ability of 32u4-based Arduino-compatible boards to emulate USB-keyboard.

This library allows you to easily create light animations from an Arduino board or an ATtiny microcontroller (traffic lights, chaser, shopkeeper sign, etc.)

LiquidCrystal fork for displays based on HD44780. Uses the IOAbstraction library to work with i2c, PCF8574, MCP23017, Shift registers, Arduino pins and ports interchangably.

This library enables you to use ISR-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with Arduino-mbed (mbed_nano or mbed_rp2040) core to create and output PWM any GPIO pin.

Arduino library for MCP4728 quad channel, 12-bit voltage output Digital-to-Analog Convertor with non-volatile memory and I2C compatible Serial Interface

This library enables you to use ISR-based PWM channels on an Arduino megaAVR board, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM any GPIO pin.

Replace Arduino methods with mocked versions and let you develop code without the hardware. Run parallel hardware and system development for greater efficiency.

A library package for ARDUINO acting as ModBus slave communicating through UART-to-RS485 converter. Originally written by Geabong github user. Improved by Łukasz Ślusarczyk.

This library enables you to use ISR-based PWM channels on an nRF52-based board using Arduino-mbed mbed_nano core such as Nano-33-BLE to create and output PWM any GPIO pin.

This library enables you to use ISR-based PWM channels on an nRF52-based board using Adafruit_nRF52_Arduino core such as Itsy-Bitsy nRF52840 to create and output PWM any GPIO pin.

An Arduino library for the Nano 33 BLE Sense that leverages Mbed OS to automatically place sensor measurements in a ring buffer that can be integrated into programs in a simple manner.

his library enables you to use Hardware-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with either Arduino-mbed (mbed_nano or mbed_rp2040) or arduino-pico core to create and output PWM to any GPIO pin.

This library enables you to use SPI SD cards with RP2040-based boards such as Nano_RP2040_Connect, RASPBERRY_PI_PICO using either RP2040 Arduino-mbed or arduino-pico core.

This library enables you to use ISR-based PWM channels on RP2040-based boards, such as ADAFRUIT_FEATHER_RP2040, RASPBERRY_PI_PICO, etc., with arduino-pico core to create and output PWM any GPIO pin.

The most powerful and popular available library for using 7/14/16 segment display, supporting daisy chaining so you can control mass amounts from your Arduino!

Enables smooth servo movement. Linear as well as other (Cubic, Circular, Bounce, etc.) ease movements for servos are provided. The Arduino Servo library or PCA9685 servo expanders are supported.

Enables reading and writing on SD card using SD card slot connected to the SDIO/SDMMC-hardware of the STM32 MCU. For slots connected to SPI-hardware use the standard Arduino SD library.

Menu library for Arduino with IoT capabilities that supports many input and display devices with a designer UI, code generator, CLI, and strong remote control capability.

A library for creating Tickers which can call repeating functions. Replaces delay() with non-blocking functions. Recommanded for ESP and Arduino boards with mbed behind.

This library enables you to use Interrupt from Hardware Timers on an Arduino, Adafruit or Sparkfun AVR board, such as Nano, UNO, Mega, Leonardo, YUN, Teensy, Feather_32u4, Feather_328P, Pro Micro, etc.

This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, Mega-AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, STM32F/L/H/G/WB/MP1, Teensy, Nano-33-BLE, RP2040-based boards, etc.

A simple library to display numbers, text and animation on 4 and 6 digit 7-segment TM1637 based display modules. Offers non-blocking animations and scrolling!

Really tiny library to basic RTC functionality on Arduino. DS1307, DS3231 and DS3232 RTCs are supported. See https://github.com/Naguissa/uEEPROMLib for EEPROM support. Temperature, Alarms, SQWG, Power lost and RAM support.

Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.

True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.

RFC6455-based WebSockets Server and Client for Arduino boards, such as nRF52, Portenta_H7, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, RP2040-based boards, besides ESP8266/ESP32 (ESP32, ESP32_S2, ESP32_S3 and ESP32_C3) and WT32_ETH01. Ethernet shields W5100, W5200, W5500, ENC28J60, Teensy 4.1 NativeEthernet/QNEthernet or Portenta_H7 WiFi/Ethernet. Supporting websocket only mode for Socket.IO. Ethernet_Generic library is used as default for W5x00. Now supporting RP2040W

Enables network connection (local and Internet) and WiFiStorage for SAM DUE, SAMD21, SAMD51, Teensy, AVR (328P, 32u4, 16u4, etc.), Mega, STM32F/L/H/G/WB/MP1, nRF52, NINA_B302_ublox, NINA_B112_ublox, RP2040-based boards, etc. in addition to Arduino MKR WiFi 1010, Arduino MKR VIDOR 4000, Arduino UNO WiFi Rev.2, Nano 33 IoT, Nano RP2040 Connect. Now with fix of severe limitation to permit sending much larger data than total 4K and using new WiFi101_Generic library

Universal Timer with 1 millisecond resolution, based on system uptime (i.e. Arduino: millis() function or STM32: HAL_GetTick() function), supporting OOP principles.

arduino counter lcd display made in china

Arduino has always helped to build projects easily and make them look more attractive.  Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.

Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.

As you can see there are 28 pins which will perfectly fit into any Arduino Uno / Arduino Mega Board. A small classification of these pins is given in the table below.

As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.

You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.

Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:

If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly.  A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.

The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.

We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.

Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.

Now, you can use the code below in your Arduino IDE and upload it to your Arduino UNO for the Touch Screen Calculator to work. Further down, I have explained the code into small segments.

As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.

As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.

Okay now, we can get into the programming part. There are three sections involved in this program. One is creating a UI of a calculator with buttons and display. Then, detecting the buttons based on the users touch and finally calculating the results and display them. Let us get through them one by one.

This is where you can use a lot of your creativity to design the User Interface of calculator. I have simply made a basic layout of a calculator with 16 Buttons and one display unit. You have to construct the design just like you will draw something on MS paint. The libraries added will allow you to draw Lines, Rectangle, Circles, Chars, Strings and lot more of any preferred colour. You can understand the available functions from this article.

Another challenging task is detecting the user touch. Every time the user touches somewhere we will able to how where the X and Y position of the pixel he touched. This value can be displayed on the serial monitor using the println as shown below.

The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.

The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.

arduino counter lcd display made in china

In this project we are going to construct a bidirectional visitor counter circuit using Arduino which registers the number of people who made entry and exit at schools, library, offices, commercial buildings etc. in a given period of time, set by an operator and automatically stores the data in a SD at the instant of closing with date and time.

The LDR is connected to a “logic NOT gate” IC 7404 with a pull-up resistor 10K. The IC 7404 is here to output a proper digital signal to Arduino by receiving a noisy LDR input.

The Arduino pins 2 and 3 are configured as interrupts, an interrupt is generated when the voltage level turns from high to low and a count is incremented internally in the microcontroller.

The collected data during closing time is stored to a SD card, but interfacing Arduino to a SD card is not that straight forward until you use a SD card module using which you can easily interface a SD to any variant of Arduino.

A SD card module is illustrated in the above image. The SD card must be inserted in its socket in the correct direction and the pins that connect to Arduino are labeled at the backside.

The module can be supplied with 5V, however the SD card operates only at 3.3V, fortunately the module comes with an on-board 3.3V regulator to supply 3.3V to the SD card. The module also comes with a level shifter IC which takes 5V signal from Arduino or any other microcontroller and converts it to 3.3V signal which is compatible with the SD card; otherwise 5V will kill it.

The SD card utilizes SPI protocol to communicate with Arduino and generates a text file containing data of entry and exit count with date and time. An operator has to insert the SD card to his/her computer to read the data. The logged data is illustrated in the below image:

DS3231 / DS1307 utilizes I2C protocol to communicate with Arduino, it can track time and date up to year 2100 with leap year compensation and it comes with a 3V coin cell which keep the RTC running even when you disconnect the main power supply to the circuit and it can run on the coin cell for more than 2 years.

3) Once you upload the code, you will see date and time on the display. Now disconnect the power for 10 seconds and reconnect it, you should see correct date and time are displayed and running.

This project utilizes an I2C LCD adapter module which is connected to a 16 x 2 LCD display. The I2C LCD module helps the project to prototype it quickly by reducing the number of wires that connects from LCD to four; otherwise we have to connect a bunch wires from Arduino to LCD.

It utilizes I2C protocol hence its name and can be soldered on the back of the LCD or can be connected on a breadboard as illustrated in the above image. It shares the same I2C bus as RTC does. Use the on-board trim potentiometer to adjust the contrast of the display.

After you prototype the circuit in a breadboard, the main construction can be done using a well-designed PCB and use Arduino pro mini for the main construction.

3) To set start time press the menu button and press enter. Now the LCD will ask you to set (starting) hours and use INC and DEC buttons to select an hour (0 to 23) and press enter. Now the LCD will ask you to set minutes (0 to 59), use INC and DEC buttons to select a minute and press enter, the LCD will say start time is saved.

arduino counter lcd display made in china

Marlin deals with a variety of different displays and needs to display a lot of different languages in different scripts on them, within their capabilities. The system described here solves some of the related problems that need to be overcome with in a limited environment.

On all these displays you can define 8 custom symbols to display at once. In Marlin these characters are used on the Boot Screen, and on the Info Screen for the Bed Temp, Degree symbol, Thermometer, “FR” (feed-rate), Clock, and Progress Bar. On the SD Card listing screens some of these characters are re-used again for Up-level, Folder, and Refresh.

Graphical displays provide complete freedom to display whatever we want, so long as we provide a program for it. Currently we deal with 128x64 Pixel Displays and divide this area into ~5 Lines with ~22 columns. So we need monospace fonts with a bounding box of about 6x10. Until now we’ve been using a custom Marlin font similar to ISO10646-1 but with special symbols at the end, which made ‘ü’ and ‘ä’ inaccessible at 6x10 size.

All these languages (except English) normally use extended symbols not contained in US-ASCII. Even the English translation uses some Symbols not in US-ASCII (e.g., ‘\002’ for Thermometer, STR_h3 for ‘³’). In the code itself symbols may be used without taking into account the display they’re written on.

The upshot of all this is that on Western displays you’ll see a ‘~’ while on Cyrillic an “arrow coming from top - pointing to left” (which is quite the opposite of what the programmer wanted). The Germans want to use “ÄäÖöÜüß”, the Finnish at least “äö”. Other European languages want to see their accents too. For other scripts like Cyrillic, Japanese, Greek, Hebrew, … you have to find totally different symbol sets.

The Japanese translator dealt with two scripts, introducing a special font for Graphical Displays and making use of the Japanese extended character displays. Thus he ended up with two pretty unreadable language.h files full of ‘\xxx’ definitions. Other languages either tried to avoid words that included special symbols or just used the basic symbols without the accents, dots… whatever.

Make output functions that count the number of chars written and switch the font to Marlin symbols and back when needed. (ultralcd_impl_DOGM.h) (ultralcd_impl_HD44780.h)

Make three fonts to simulate the HD44780 charsets on dogm-displays. With these fonts the translator can check how the translation will look on character-based displays.

If you make extensive use, your file will look like language_kana.h and your language file will only work on one of the displays (in this case DISPLAY_CHARSET_HD44780 == JAPANESE).

If you want to make use of more than a few symbols outside standard ASCII or want to improve the portability to more types of displays, use UTF-8 input. Which means defining another mapper.

The mapper_tables do their best to find a similar symbol in the HD44780fonts (for example, replacing small letters with the matching capital letters). But they may fail to find a match and will output a ‘?’. There are combinations of language and display which simply have no corresponding symbols - like Cyrillic on a Japanese display or _vice-versa. In those cases the compiler will throw an error.

In short: Choose a mapper that works with the symbols you want to use. Use only symbols matching the mapper. On Full Graphic Displays all symbols should be fine. Using the graphical display, you can test for bad substitutions or question-marks that would appear on character displays by defining SIMULATE_ROMFONT and trying the different variants.

If you get a lot of question marks on the Hitachi-based displays with your new translation, maybe creating an additional language file with the format language_xx_utf8.h is the way to go.

In this file specify the mapper (e.g., MAPPER_NON) and font (e.g., DISPLAY_CHARSET_ISO10646_1) and translate some of the strings defined in language_en.h. (Remove #ifndef #endif from the defines.)

If there’s no existing mapper for your language then things get a bit more complex. With the Hitachi-based displays you can’t make something useful without a matching charset. For graphical display… let’s take the example of Greek: Find a matching charset. (Greek and Coptic)

If you want to integrate an entirely new variant of a Hitachi-based display. Add it to Configuration.h and define mapper tables in utf_mapper.h. You may need to add a new mapper function.

The length of strings (for menu titles, edit labels, etc.) is limited. “17 characters” was a crude rule of thumb. Obviously 17 is too long for a 16x2 display. So, language files are free to check the LCD width and provide shorter strings in the following manner:

On 16x2 displays, strings suited to a 20x4 display will be chopped to fit. So if shorter string isn’t provided, at least make similar strings different early in the string. (‘Someverylongoptionname x’ -> ‘x Somverylongoptionname’)

To find out which character set your hardware uses, set #define LCD_LANGUAGE test and compile Marlin. In the menu you’ll see two lines from the upper half of the character set: JAPANESE displays “バパヒビピフブプヘベペホボポマミ”

If you get an error message about “missing mappers” during compilation - lie about your display’s hardware font to see at least some garbage, or select another language.

LCD_LANGUAGE: The LCD language and encoding to compile in. For example, pt-br_utf8 specifies Portuguese (Brazil) in UTF-8 format with a mapper. For a faster, lighter, but non-accented translation you might choose pt-br instead.

SIMULATE_ROMFONT: Languages can opt to use the HD44780 ROM font special characters on graphical display. This method can be used for accented Western, Katakana, and Cyrillic if they don’t supply their own fonts, or just for testing character-based mappers on a graphical display.

DISPLAY_CHARSET_ISO10646_1: To support a graphical display, a language file must specify either SIMULATE_ROMFONT or a display character set. This specific option selects the Western font for use on graphical display. Others include ISO10646_5, ISO10646_KANA, ISO10646_GREEK, ISO10646_CN, ISO10646_TR, and ISO10646_PL. If no character set is specified, Marlin assumes ISO10646_1.

MAPPER_ONE_TO_ONE: Most character sets on graphical displays (including SIMULATE_ROMFONT) map the character index directly to its position in the upper half of the font. This is possible for character sets that have only 2 contiguous pages of Unicode containing all the special characters. Other mappers use logic or a lookup table to locate the glyph.

arduino counter lcd display made in china

In this project, we will need two softwares first is the Arduino IDE which is used for Arduino programming. As we are going to make this project in simulation, we will use Proteus simulation software. Proteus is a simulation software for electronics projects. In this software, we can run the real time simulation of electronics circuits and debug them without damaging any real components.

And Proteus has a very large database for electronics components but it lacks some new component libraries, for that we have to install some libraries for those components. In this, we have to install a library for the Arduino UNO module.

It is an LED display module, in which there are seven LEDs arranged in the rectangular form on which we can display single digit numbers from 0-9 and some alphabets as well.

As they are simple LEDs so while using them in the circuit, it is mandatory to use some protection resistors with each of them if we are using Common ground type display and single resistor with the Common Vcc pin if we are using the Common Vcc type display.

As we will use the push buttons in active low condition which means one side will be connected to ground and other terminal will be connected to the Arduino.

As we know counters are simple electronic circuits which count some values and after reaching the maximum value they will reset. In this project, we will make an Up-Down counter which means our counter will count from 0-9 and again after 9-0.

We will use the 7 segment display for showing the counter values. In this project, we have used the common ground type of LED display. And two push buttons to start the counter in up counting or in down counting. When we press the UP push button, then the Arduino will activate the pins as per the up counting and LED will display numbers from 0-9 and when we press the DOWN push button then the Arduino will activate the pin as per the down counting and LED will display numbers from 9-0.

Connect the pins of the LED display in the same order as A-2, B-3, C-4, D-6, E-7, F-8, G-9 and DP -5. Otherwise it will show the wrong data on the display.

Now we will start writing the code of the Up-Down counter. The code of this project will be divided into three major parts. In the first part, we will declare all the required variables and pins. In the second part, we will set the modes of pins and set the initial states to pins and do the required configuration if needed and the last part we will write our main functionality of our project which we want to run continually.

So let’s declare all the required variables. First of all, declare the variables for pins of the seven segment display and Up counter push button and down counter push button.

It is one of the most important functions in the Arduino code structure. Without this, our code will not compile successfully and will show the error.

As per the application of our code first of all, we will read the Up and Down counter push button states and when the state changes we will trigger the counter.

Write the condition for the Up counter button, when the button is pressed then the state of the button changes and we will check the state of the push button. If it is HIGH then we will start incrementing the counter variable and using the “changeNumber()”, we will display the numbers on the seven segment LED display.

Similarly, for the down counter push button, when the push button is pressed then the state changes and when the state of the button is high then we will start decrementing the counter variable and display the number on the seven segment display using the “changeNumber()” function

So, when we press the Up push button, then the counter variable will be incremented by one on every press and when we push the Down push button, then the counter variable will be decremented by one on every push and the same will be displayed on the Seven segment LED display.

I hope we have covered all the points related to this project. I think it will be a useful project for learning purposes and gives an understanding about working of counters. Please let us know in the comment section if you have faced any issues while making this project.

arduino counter lcd display made in china

Mechanical counters look beautiful and even 2 decades back they were common to find in cars, two whellers, gas stations, electric meters, video tape players an so on. Some had mechanical reset to set to zero, some were cumulative. Here is Basic Information Around Mechanical Counter for Arduino as They are Difficult to Find Outside Industrial Usage. They Can Be Stepper Motor Counter With or Without Reset. These mechanical counters counts digits (so they were called “digital” once) and were built using mechanical components inside exactly like mechanical clocks.

These mechanical devices consists of of disks mounted on an axle, with the digits printed or drawn on their edge. The extreme right disk moves one increment with each event. Even can be rotation or a pull. Each disks has a protrusion so that, upon the completion of one revolution of disk right to it, it moves one increment. Veeder-Root company was a big manufacturer of these counters.

Some these plain mechanical counters made electromechanical counters by adding a small solenoid. The solenoid responds to electrical impulse. Some were directly mounted to stepper motors. Some were made clocks with adjustment with RPM and second.

High quality difficult to find now except in few countries. High quality will have bearings with serviceable parts inside like clocks. We will suggest to find company (this is example of India) which manufacturer counters like this :

https://blog.adafruit.com/2012/10/26/new-products-mechanical-decade-counters-large-size-pack-of-5-and-mechanical-decade-counters-small-size-pack-of-5/

https://blog.adafruit.com/2012/10/26/new-products-mechanical-decade-counters-large-size-pack-of-5-and-mechanical-decade-counters-small-size-pack-of-5/

There is a China generic 75-I Mechanical Resettable 5 Digit mechanical counter which costs around 8 USD. External It’s maximum rotation speed is 350 r/min, enough big to fill palm.

Conclusion depends on what exactly you’ll do with the counter. In general, an ideal mechanical counter for development purpose is that which supports forwards & reverse movement with minimal torque (aka lesser rpm) and has a reset mechanism. Old tape player counters are ideal for that need.