lcd displays ppt quotation
The free PPTX document contains a selection of 31 custom-made template slides for your quotes, ready to be used ‘as it is’: from speech bubbles or callouts to creative text boxes, origami bubbles, full-page, with or without background photo…
Recent PPT defaults include a small shadow on all shapes. Remove this shadow if it"s not actually needed. Also, don’t leave shapes in their default blue.
While you usually can get away with the default slide size for most presentations, you may need to adjust it for larger presentations on weirdly sized displays. If you need to do that, here"s how.
Between operating systems, PowerPoint is still a bit jumpy. Even between differing PPT versions, things can change. One way to fix these problems is to make sure that you have the right hardware — so just bring along your own laptop when you"re presenting.
Spatial uniformity of displayed luminance can vary widely between different makes and models of LCD, the major determinant of uniformity being the backlight scheme [34] (some older LCDs allowed VGA input and relied on built-in analog-to-digital conversion, also a potential source of noise). Two commonplace schemes are, first, direct backlighting, wherein a spatial array of light-emitting diodes (LEDs) and a diffuser screen sit behind the liquid crystal panel, and, second, edge illumination, wherein light emitted by a linear array of diodes at one of the display’s edges is spatially distributed via lightguide. We quantified the spatial uniformity of the CG247X by presenting low-, medium-, and high-luminance static test patches at nine display positions (Fig 2, inset) and using the LS-110 spot meter to measure the luminance of each patch. At each luminance tested, we calculated the grand average over all display positions, and divisively normalized measurements by that average. As illustrated in Fig 2, at medium- and high-luminance, the CG247X showed greater spatial uniformity than our consumer-grade LCD (Dell U2415b): for the CG247X, spatial variation was 5.1% at medium and 3.5% at high luminance, whereas for the U2415b, variation was 8.1% at medium and 8.5% at high luminance. The uniformity of the two displays was comparable at low luminance (CG247X, 27% versus U2415b, 17%). Prior to normalization, there were, as expected, marked differences between low-, medium-, and high-luminance measurements. For example, at display position 5 (Fig 2, inset) on the CG247X, low-luminance measurements ranged from 0.07 to 0.10 cd/m2, medium-luminance measurements ranged from 57.70 to 57.93 cd/m2, and high-luminance measurements ranged from 113.9 to 114.2 cd/m2 (Table 1). We also quantified spatial surround effects; using a tripod at 1 m, we measured displayed luminance at position 5 comparing large (1920-by-1200 pixels) and small (384-by-384 pixels) 100%-luminance patches. For CG247X, the mean of 10 large-patch measurements was 0.56 cd/m2 greater than that of 10 small-patch measurements (two-sample t-test, p < 0.01), i.e., an increase of 0.50%. For the U2415b, the increase was 0.71 cd/m2, i.e., 0.67% (two-sample t-test, p < 0.01).
In-plane switching (IPS) LCDs, like our CG247X and U2415b, enable larger viewing angles than older LCD technology (e.g., twisted-nematic displays) [23]. To do so, IPS displays interdigitate electrodes (see 23]. For the displays we tested, vendor-issued specifications state a viewing angle of 178 deg, however, in the absence of further details, that derived measure is difficult to assimilate. We measured displayed luminance as a function of viewing angle over a range of azimuth and elevation (±60 deg). We fit a circular von Mises function (Fig 3, the CG247X and U2415b performed comparably in this regard. For the CG247X, the FW90M was 28.6 deg (fitted parameters: α = 1.45, κ = 3.37) and 32.6 deg (α = 1.65, κ = 2.62) for azimuth and elevation, respectively. For the U2415b, the FW90M was 31.2 deg (α = 1.60, κ = 2.85) and 31.0 deg (α = 1.55, κ = 2.90) for azimuth and elevation, respectively. At high-luminance we made a reduced set of measurements, assuming rotational symmetry, varying azimuth or elevation from 0 to 60 deg. These additional measurements yielded similar FW90M estimates. This descriptive model can be used to select a viewing distance with tolerable attenuation due to viewing angle. For example, if the CG247X is viewed from 1 m, a stimulus presented at the top of the display’s vertical meridian (i.e., elevation = 9.2 deg) would, due to viewing angle, undergo luminance attenuation by a factor of 0.97.
A common misconception among vision researchers and clinicians is that LCDs do not flicker (i.e., that LCDs are temporally uniform). In fact, there are two major sources of flicker that can affect a LCD: first, backlight flicker which usually occurs at temporal frequencies (e.g., 1000 Hz) well beyond the critical flicker fusion frequency (e.g., Elze & Tanner [24], and Ghodrati, Morris, & Price [35]), and, second, the so-called frame response which occurs at the refresh rate of the display (here, 60 Hz) [23, 36]. Frame responses are largely attributable to an LCD’s inversion scheme: a feature of modern displays wherein the polarity of the video signal voltage applied to the liquid crystal material is inverted from one video frame to the next. This inversion minimises long-term degradation, or aging, of the display by minimizing the DC voltage across the liquid crystal elements. Frame inversion schemes typically have fine spatial structure, on the scale of individual pixels, making them mostly imperceptible (e.g., dot inversion schemes [36]). We quantified the temporal uniformity of the CG247X by presenting (nominally) static test patches at display position 5 (Fig 2, inset) and using the linearized photodiode device to measure displayed luminance over time. At each of 11 luminances (0, 10, 20 … 100%) we made 10 one-second recordings, averaging the Fourier amplitude spectra of those 10 recordings. Fig 4 shows the average spectrum at each luminance. The spectra of the CG247X revealed a frame response comprising a 60 Hz component as well as harmonic components at integer multiples of 60 Hz. The response at 60 Hz varied non-monotonically in amplitude with the luminance of the static test patch, peaking at a luminance of 50%. However, the CG247X appeared free of backlight modulations. This absence of backlight modulations freed us of the consequences of said modulations (often desynchronized with the frame refresh signal) on increment/decrement transitions between luminances (see Fig 5 in [24]). The spectra of our consumer-grade LCD also revealed a frame response, as well as 1.2 kHz flicker, likely associated with the back light. This latter temporal nonuniformity increased linearly with the luminance of the static test patch.
In general, LCD response times—the duration of the rise or fall of a step from one luminance level to another—vary as a function of both step source and destination luminance. This nonlinear behaviour is owing largely to mechanisms of response time compensation (RTC) (e.g., the work of McCartney [25]), a feature of many modern LCDs designed to enhance video. RTC mechanisms speed luminance transitions by transiently altering the voltage applied to the liquid crystal associated with individual pixels (e.g., Fig 1 in [27]; Fig 5 in [24]). We measured the CG247X’s response times by presenting luminance steps—both increments and decrements—to the linearized photodiode device. Step source and destination took values 0, 25, 50, 75, or 100%. As illustrated in Fig 5, response times varied as a function of both luminance step source and destination. For example, stepping from 0% luminance to 25% luminance took 24.5 ms, stepping from 75% to 100% took 12.9 ms, and stepping from 25% to 0% took 8.1 ms. All of these steps are the same height, but response times differ markedly. Overall, the response times of our consumer-grade LCD were less than the CG247X response times. However, as we will illustrate below, faster is not better; although RTC mechanisms reduced the response times of our consumer-grade LCD, they contaminated displayed luminance with overshoot and undershoot artifacts which are problematic for many applications in clinical and experimental vision research, including the presentation of mean-modulated flicker. RTC mechanisms lower “black-white-black” and “grey-to-grey” response times, which are used to promote displays to the gaming community and other consumer markets.
(A) CG247X response times. The leftmost gray box (labelled “0%”) encompasses four points showing mean response times for transitions from source luminance = 0% to destination luminances = 25, 50, 75, and 100% (x axis). These rise times (upward triangles) decreased with increasing destination luminance. The gray box labelled “25%” shows mean response times of transitions from source luminance = 25% to destination luminances = 0, 50, 75, and 100%. The fall time (downward triangle), from 25% to 0% luminance, was less than the rise times. Overall, response times varied as a function of both source and destination luminance, as is generally expected of LCDs. We made 10 measurements at each source/destination luminance pair; error bars, where not obscured by symbols, mark the full range (from minimum to maximum) of these 10 measurements. (B) U2415b response times. Graphical conventions are as in A. Overall, U2415b response times were less than CG247X response times.
At the outset of this study, we made preliminary measurements similar to those illustrated in Fig 5. We noticed that rise and fall times straddling 50% luminance were approximately equal (e.g., rise time from 25% to 75% = 16.3 ms; fall time from 75% to 25% = 17.1 ms) which led us to wonder whether the CG247X could be used to display achromatic, mean-modulated flicker without the introduction of unworkable artifacts. To better determine the CG247X’s potential suitability for presenting mean-modulated flicker, and its susceptibility, or otherwise, to overshoot and undershoot artifacts typical of LCDs implementing RTC mechanisms, we presented mean-modulated flicker on both the CG247X and our consumer-grade display, using the linearized photodiode device to measure luminance over time. We used a flicker period of 20 frames (333.3 ms), and contrast ranging from 20 to 100%. As illustrated in Fig 6, the consumer-grade display’s luminance traces revealed overshoot and undershoot artifacts symptomatic of RTC. The CG247X’s luminance traces, however, appeared free of RTC artifacts. We used these traces to estimate response times specific to mean-modulated flicker, illustrated in Fig 7. Overall, CG247X rise and fall times were greater than those of our consumer-grade LCD. However, with the exception of 100% contrast, CG247X rise and fall times were approximately equal, indicating its potential suitability for presenting mean-modulated flicker.
To further determine whether the CG247X could be used to display achromatic, mean-modulated flicker without the introduction of unworkable artifacts, we presented flicker at frequencies ranging from 0.94 to 30 Hz and contrasts ranging from 20 to 100%. We used recorded traces (similar to those in Fig 6) to derive cycle-averaged luminance. In Fig 8, we illustrate how cycle-averaged luminance was approximately constant for all flicker frequencies, and for contrasts up to 80%. At 100% contrast, cycle-averaged luminance decreased with flicker frequency, indicating that, at full contrast, the monitor is not suitable for presenting mean-modulated flicker. Cycle-averaged luminance recorded from our consumer-grade LCD (Dell U2415b) varied as a function of flicker frequency at all contrasts tested; this variation is problematic for presenting achromatic, mean-modulated flicker. We also used CG247X traces to derive cycle-averaged r.m.s. luminance. In Fig 8, we illustrate how cycle-averaged r.m.s. luminance decreased with flicker frequency, indicative of loss of contrast. The consumer-grade LCD was affected by both changes in cycle-averaged luminance and loss of contrast.
We presented mean-modulated flicker at a range of flicker frequencies (0.94 to 30 Hz) and contrasts (20 to 100%). We used waveforms (e.g., Fig 6) recorded from the CG247X (A) to derive cycle-averaged luminance; we divisively normalized that derived measure using the cycle-averaged luminance of a “reference” waveform, that is, the response to contrast = 20% and flicker frequency = 0.94 Hz. This relatively low-contrast, low-frequency waveform was chosen as reference because it should be easily realized by both displays. For clarity, cycle-averaged responses for contrast = 40, 60, 80, and 100% are offset by -0.1, -0.2, -0.3, and -0.4 log units, respectively (arrowheads). As shown, cycle-averaged luminance was approximately constant for contrast = 20 to 80% at all flicker frequencies tested (0.94 to 30 Hz). At contrast = 100%, cycle-averaged luminance decreased with flicker frequency. Cycle-averaged luminance recorded from the consumer-grade U2415b (B) increased with flicker frequency at all contrasts tested. Graphical conventions are as in A. We used waveforms recorded from the CG247X (C) to derive cycle-averaged r.m.s. luminance; we divisively normalized that derived measure using cycle-averaged r.m.s. luminance of the reference waveform (20%, 0.94 Hz). As shown, at all contrasts tested (20 to 100%), cycle-averaged r.m.s. luminance decreased with flicker frequency, indicative of a loss of effective contrast. Cycle-averaged r.m.s. luminance recorded from the U2415b (D) revealed both increases and decreases to effective contrast with flicker frequency. Each symbol is the average of 10 measurements. (None of the data in panels C and D is offset.) We modeled cycle-average luminance and r.m.s. luminance on the CG247X as a causal exponential decay (Methods). This model comprised one free parameter, τ. For the illustrated fit (blue), τ = 6.6 ms. The red symbols in panel C (slightly offset rightward for clarity) show the result of a validation experiment (see
To quantify the nonlinearities associated with high-contrast, mean-modulated flicker, and to quantify temporal dependence between frames, we used a paired-pulse paradigm [37, 38]. We presented paired biphasic luminance pulses at position 5 (Fig 2, inset), systematically varying the inter-pulse interval, T (Methods). We used the measured responses to individual pulses to predict paired-pulse responses, and to model the display’s nonlinearities we subtracted each paired-pulse response from its prediction. Fig 9 shows the nonlinear behaviour of the CG247X and, for comparison, that of our consumer-grade LCD. In our CG247X, a nonlinear mechanism appeared to speed the transition between white and black (100% and 0% luminance, respectively; leftmost upper panel in Fig 9B). When paired pulses were separated by 16.67 ms or more (the three rightmost upper panels in Fig 9B where predicted and displayed luminance are approximately equal), the CG247X behaved linearly, that is, we saw no evidence of temporal dependence between frames. In our consumer-grade LCD, a nonlinear mechanism appeared to attenuate the transition to white (100% luminance; leftmost lower panel in Fig 9B). This attenuation reconciles with Fig 6 (lower), which shows marked overshoot at moderate contrast (e.g., 60% contrast, middlemost panel of Fig 6), but a near absence of overshoot at high-contrast (rightmost panel of Fig 6). Compared to the CG247X, the U2415b’s nonlinearities were large in magnitude and long-lasting. Paired pulses separated by as much as 33.33 ms (the third lower panel in Fig 9B, where predicted and displayed luminance are unequal) evoked nonlinear behaviour in the U2415b, that is, we saw clear evidence of temporal dependence between frames.