tft display vs super amoled display hindi brands
Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.
TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.
OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.
If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.
New Delhi: The technology used in mobile displays in the modern day smartphones has progressed significantly. In the era of touchscreen smartphones, the display technology has become one of its primary selling points, and certainly its most unique feature. Not only we want the touch screens to offer crisp text, vibrant images, blur-free video and enough brightness, we want them at low cost too.
For instance, HTC One uses Super LCD3 tech, in its 4.7in screen which gives a resolution of 1920 x 1080 pixels, with pixel density of 469 pixels per inch (ppi). This results in super display in terms of crispness and colour reproduction. HTC says the SLCD technology gives the phone better power management, improved viewing angles and is easier to produce.
The Thin film transistor liquid crystal display (TFT LCD) technology is the most common display technology used in mobile phones. A variant of liquid crystal display (LCD), the technology uses TFT technology to enhance image quality. It offers better image quality and higher resolutions as compared to earlier generation LCD displays.
IPS LCD Stands for In Plane Switching liquid Crystal Display. This technology offers better display quality as compared to the TFT-LCD display. The good part about IPS LCD is that it offers better viewing angles and consumes less power. Due to higher costs, it is found only on high-end smartphones. Apple uses a high resolution (640x960 pixels) version of IPS LCD in its iPhone 4, which is also called Retina Display.
Organic Light Emitting Diode (OLED) display technology is much better as compared to the LCD display technology because of its excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.
Since these display forms are easier to produce, they can be made to larger sizes. Because OLEDs are essentially plastics, they can be made into large, thin sheets.
AMOLED stands for Active Matrix Organic Light Emitting Diode. A step ahead of OLED screens, the AMOLED screens can control each pixel individuality while maintaining the properties of an OLED panel. AMOLED screens use a different subpixel arrangement which can reduce the image quality a bit.
AMOLED screens have all the attributes of an OLED display like excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.
Super AMOLED display technology is an advanced version of AMOLED display. Samsung uses this term for the AMOLED panels that they develop. Super AMOLED screens are built with capacitive touch sensors on the display itself. Super AMOLED display is much more responsive than an AMOLED display. Samsung top-of-the-line Galaxy SII comes engineered with Super AMOLED display technology. Samsung has already took it"s SMOLED screen to next levels by developing Super AMOLED+, HD Super AMOLED+ and FHD Super AMOLED+ screens.
It is a name given by Apple to the high-resolution screen technology introduced on the iPhone 4 in June 2010. Something is a Retina Display when it offers a density of pixels above 163 pixels per inch. The company calls it the Retina display because its pixels cannot be individually identified by a human eye, thus rendering a super sharp display, more crisp text and more clear pictures.
Retina Display is designed to smooth the jagged edges of pixels are provide a higher-quality image than previously available on mobile devices. Apple claims that its resolution is so good that it makes it impossible for the human eye to distinguish individual pixels. Its effects shows up in text, images and videos.
Color boost is simply Moto"s marketing term for their new display. Although it now uses LCD displays, the company fine-tuned its panels to match the saturation of OLED displays while maintaining the higher performance of LCD. It"s somewhere in the middle ground.
The demand for the best visual experience has grown higher over recent years. Everyone wants the best in the class display to their smartphones to view the high-definition magic their phone provides. This demand for better display has risen recently as big brands like iPhone and Samsung have added some absolutely gorgeous displays to their smartphones.
The major battle begins here. The two competitors of the game are LTPS LCD and AMOLED. These are state of the art displays and people often find themselves comparing these two displays. People are wondering about the result for LTPS vs AMOLED.
LTPS and AMOLED comparison has always been an interesting debate. Potential buyers of smartphones keep comparing the difference between LTPS and AMOLED. There is a complete LTPS and AMOLED comparison below which outlines the difference between these two types:
LTPS stands for Low-Temperature PolySilicon. This type of display provides a faster and more integrated display compared to a standard LCD. The LTPS display provides a better picture quality for the user and some people consider it to be more true to life. It provides larger picture densities and is also lower on power consumption as it does not light up every pixel individually. People can expect a higher picture resolution in their displays.
AMOLED stands for Active Matrix Organic Light Emitting Diode. AMOLED displays are completely different. They use an array of LEDs that help light up every pixel individually, so the only area of the display that is in use, only those pixels light up and the others stay shut. This helps provide a higher contrast to the image with very deep blacks. The display also helps in power consumption as every pixel draws power individually.
There is no actual winner to this debate, just like the console war or the Android vs Apple debate. The choice depends completely on the user and their tastes and preferences. If the users want a better picture resolution in their display, they can go with LTPS LCD and if the user wants a higher contrast picture to their display then they can go with AMOLED. Both displays deteriorate faster than standard LCD screens. Apple is known to use LCD panels in their smartphones and Samsung is known to use AMOLED ones. These are the points that can help the user make an informed decision about which display they would want to go with.
Over time, the purpose of using mobile phones or Smartphones has changed. Comparatively, it has now become a basic necessity of every individual. Smartphone has dramatically transformed the lives of individuals. It has now become a mini-computer that everyone carries in their pocket. Instead, you can have multiple things at your fingertips in a few seconds. While there are plenty of things to look for, AMOLED vs OLED is also a part of it.
Before purchasing any Smartphone, everyone goes through a list of specifications. This list includes display type, screen size, battery backup, supported operating system, total internal memory, and many others. Today, we have brought a comprehensive study of the significant display technologies available nowadays.
This article will introduce you to AMOLED vs OLED display technologies. Then, we will discuss the properties of both display technologies, followed by the difference between AMOLED vs OLED.
It stands for Natural Light-Emitting Diode, a type of LED technique that utilises LEDs wherein the light is of organic molecules that cause the LEDs to shine brighter. These organic LEDs are in use to make what are thought to be the best display panels in the world.
When you make an OLED display, you put organic films among two conductors to make them. As a result, a bright light comes out when electricity is used—a simple design with many advantages over other ways to show things.
OLEDs can be used to make emissive displays, which implies that each pixel can be controlled and emits its very own light. As a result, OLED displays have excellent picture quality. They have bright colours, fast motion, and most importantly, very high contrast. Most of all, “real” blacks are the most important. The simple design of OLEDs also makes it easy to create flexible displays that can bend and move.
PMOLED stands for Passive Matrix Organic Light Emitting Diode. The PMOLEDs are easy to find and much cheaper than other LEDs, but they cannot work for a long duration as their lifespan is very short. Therefore, this type of display is generally for small devices up to 3 inches.
AMOLED stands for Active Matrix Organic Light Emitting Diode. This type of display is generally for large platforms. It contains TFT, which further consists of a storage capacitor. It also works on the same principle as OLED displays.
AMOLED offers no restriction on the size of the display. The power consumption of AMOLED is much less than other display technologies. The AMOLED provides incredible performance. It is thinner, lighter, and more flexible than any other display technology like LED, or LCD technology.
The AMOLED display is widely used in mobiles, laptops, and televisions as it offers excellent performance. Therefore, SAMSUNG has introduced AMOLED displays in almost every product. For example, Full HD Super AMOLED in Samsung Galaxy S4 and Samsung Galaxy Note 3, Super AMOLED in Samsung Galaxy S3, HD Super AMOLED in Samsung Galaxy Note, and HD Super AMOLED Plus in Samsung Galaxy S3. Apart from this, it is also used in AMOLED vs OLED creating the following:
So far, we have discussed OLED and AMOLED display technologies. Now, we will look at some of the differences between OLED and AMOLED display technology:
Over time, the purpose of using mobile phones or Smartphones has changed. Comparatively, it has now become a basic necessity of every individual. Smartphone has dramatically transformed the lives of individuals. It has now become a mini-computer that everyone carries in their pocket. Instead, you can have multiple things at your fingertips in a few seconds. While there are plenty of things to look for, AMOLED vs OLED is also a part of it.
Before purchasing any Smartphone, everyone goes through a list of specifications. This list includes display type, screen size, battery backup, supported operating system, total internal memory, and many others. Today, we have brought a comprehensive study of the significant display technologies available nowadays.
This article will introduce you to AMOLED vs OLED display technologies. Then, we will discuss the properties of both display technologies, followed by the difference between AMOLED vs OLED.
It stands for Natural Light-Emitting Diode, a type of LED technique that utilises LEDs wherein the light is of organic molecules that cause the LEDs to shine brighter. These organic LEDs are in use to make what are thought to be the best display panels in the world.
When you make an OLED display, you put organic films among two conductors to make them. As a result, a bright light comes out when electricity is used—a simple design with many advantages over other ways to show things.
OLEDs can be used to make emissive displays, which implies that each pixel can be controlled and emits its very own light. As a result, OLED displays have excellent picture quality. They have bright colours, fast motion, and most importantly, very high contrast. Most of all, “real” blacks are the most important. The simple design of OLEDs also makes it easy to create flexible displays that can bend and move.
PMOLED stands for Passive Matrix Organic Light Emitting Diode. The PMOLEDs are easy to find and much cheaper than other LEDs, but they cannot work for a long duration as their lifespan is very short. Therefore, this type of display is generally for small devices up to 3 inches.
AMOLED stands for Active Matrix Organic Light Emitting Diode. This type of display is generally for large platforms. It contains TFT, which further consists of a storage capacitor. It also works on the same principle as OLED displays.
AMOLED offers no restriction on the size of the display. The power consumption of AMOLED is much less than other display technologies. The AMOLED provides incredible performance. It is thinner, lighter, and more flexible than any other display technology like LED, or LCD technology.
The AMOLED display is widely used in mobiles, laptops, and televisions as it offers excellent performance. Therefore, SAMSUNG has introduced AMOLED displays in almost every product. For example, Full HD Super AMOLED in Samsung Galaxy S4 and Samsung Galaxy Note 3, Super AMOLED in Samsung Galaxy S3, HD Super AMOLED in Samsung Galaxy Note, and HD Super AMOLED Plus in Samsung Galaxy S3. Apart from this, it is also used in AMOLED vs OLED creating the following:
So far, we have discussed OLED and AMOLED display technologies. Now, we will look at some of the differences between OLED and AMOLED display technology:
OLED comprises thin layers of the organic component, which emits light when the current passes through it. In this technology, each pixel transmits its own light. On the other side, AMOLED consists of an additional layer of thin-film transistors (TFTs). In AMOLED, the storage capacitors are used to maintain the pixel states.
While the technology is different among various manufacturers, Samsung’s edge AMOLED displays use plastic substrates with poly-Si TFT technology similar to how LG uses it in their POLED technology. This technology is what makes the possibility to build curved displays using an active-matrix OLED panel.
OLED display much deeper blacks as compared to the AMOLED displays. You cannot see the screen in AMOLED display under direct sunlight. The AMOLED display quality is much better than the OLEDs as it contains an additional layer of TFTs and follows backplane technologies.
These organic compounds are present between the protective layers of glass or plastic. Comparatively, AMOLED comprises an active matrix of OLED pixels along with an additional layer of TFTs. This extra layer is responsible for controlling the current flow in each pixel.
The OLED display offers a high level of control over pixels. Hence, it can be turned off completely, resulting in an excellent contrast ratio compared to the AMOLED displays and less power consumption. On the other side, AMOLED has faster refresh rates than OLEDs. Also, they offer a tremendous artificial contrast ratio as each pixel transmits light but consumes more power than OLEDs.
OLED displays are comparatively much thinner compared to the LCDs. Hence, it provides more efficient and bright presentations. In addition, OLED offers support for large display sizes compared to the traditional LCDs. AMOLEDs remove the limitation of display sizes. one can fit it into any display size.
Putting all the points mentioned above in view, the key difference to understand appropriately is that POLED is an OLED display with a plastic substrate. On the other hand, AMOLED is Samsung’s word for its display technology which is mainly for marketing. Therefore, most phone manufacturers having AMOLED displays mean that they are using Samsung displays. It is as simple as that. To add to that, all the curved display technology is made possible because of the usage of plastic substrate.
So, based on the points mentioned above, the difference between OLED and AMOLED displays, you can choose any of the two display technology at your convenience. Both are good, offer excellent performance, and are customised according to your requirements.
The AMOLED display has a higher quality than OLEDs since it has an additional layer of TTs and uses backplane technologies. When compared to OLED screens, AMOLED displays are far more flexible. As a result, they are substantially more expensive than an OLED display.
Window to the digital world, the display is one of the first seen features when selecting a smartphone, so a show must be good, and an AMOLED display offers the same. Offering a great viewing experience, here are the top 3 AMOLED screen smartphones available in the market right now:
Realme 8 Pro features a 6.4-inch Super AMOLED display with 411 PPI and a 2.5D curved display. It runs on Snapdragon 720G, bundled with Adreno 618 and 6GB of RAM. On the rear, the Realme 8 Pro has a quad-camera setup with 108-megapixels primary sensor, 8-megapixel ultra-wide angle sensor, 2-megapixel macro sensor, and a 2-megapixel monochrome sensor.
Coming to the front, it has a 16-megapixel selfie camera housed in the punch-hole display. It comes with a 4,500 mAh battery that supports Super Dart fast charging, with 100 per cent coming in just 47 min. The Realme 8 Pro is one of the best segments with a Super AMOLED FHD+ display. Media lovers will enjoy this phone with its deep blacks and vibrant colours.
The Xiaomi Mi 11 Lite runs on Snapdragon 732G chipset bundled with Adreno 618 GPU and up to 8GB RAM. The display front comes with a 6.55-inch AMOLED display with HDR 10+ support and 402 PPI.
The cameras have a triple rear camera setup with a 64-megapixel primary sensor, 8-megapixel ultra-wide angle sensor, and a 5-megapixel macro sensor. In addition, it has a 16-megapixel selfie camera housed in the punch-hole display on the front. It has a 4,250 mAh battery with 33W fast charging with USB Type-C. With the support for HDR 10+, the AMOLED display on the Mi 11 Lite is a treat for all media enthusiasts.
OPPO has recently launched the Oppo Reno 6 Pro with MediaTek’s Density 1200 chipset coupled with Mali-G77 MC9 GPU and up to 12GB of RAM. In addition, it comes with a 6.55-inch curved AMOLED FHD+ display with support for HDR 10+ and an Oleophobic coating.
On the rear, it comes with a quad-camera setup with a 64-megapixel primary sensor, an 8MP ultra-wide angle sensor, a 2-megapixel macro sensor, and a 2-megapixel depth sensor. In addition, it has a 32-megapixel selfie camera integrated inside the punch-hole on display on the front. It comes with a 4,500 mAh battery that supports 65W Super VOOC fast charging and can charge the phone 100 per cent in just 31 minutes. Since it comes with an FHD+ curved AMOLED display on the display front, it is a treat for gamers and media consumption lovers.
Smartphone displays have advanced significantly in recent years, more so than most people realise in this technological age. Display screens are similar to windows in the mobile world, which has seen a tremendous transformation in innovative products in the last several years. People have gotten more selective when buying a phone in recent years, and although all of the functions are important, the display is always the most noticeable.
Major smartphone manufacturers attempt to provide their consumers with the most delicate devices possible that incorporate the most up-to-date technologies. In AMOLED vs OLED, AMOLED is a type of OLED and a more prominent example of both OLED and POLED, so there’s no debate about which is superior.
AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.
AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.
Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.
Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..
Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.
Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.
Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.
Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.
Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.
Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.
AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.
The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.
Nauticomp Inc.provides world-class fully customizable touchscreen displays for commercial and industrial settings. With features like sunlight readability, brightness adjustability, infrared lighting, full backlighting, all-weather capabilities, etc., our displays are second to none. Contact us today to learn more.
The demand for the best visual experience has grown higher over recent years. Everyone wants the best in the class display to their smartphones to view the high-definition magic their phone provides. This demand for better display has risen recently as big brands like iPhone and Samsung have added some absolutely gorgeous displays to their smartphones.
The major battle begins here. The two competitors of the game are LTPS LCD and AMOLED. These are state of the art displays and people often find themselves comparing these two displays. People are wondering about the result for LTPS vs AMOLED.
LTPS and AMOLED comparison has always been an interesting debate. Potential buyers of smartphones keep comparing the difference between LTPS and AMOLED. There is a complete LTPS and AMOLED comparison below which outlines the difference between these two types:
LTPS stands for Low-Temperature PolySilicon. This type of display provides a faster and more integrated display compared to a standard LCD. The LTPS display provides a better picture quality for the user and some people consider it to be more true to life. It provides larger picture densities and is also lower on power consumption as it does not light up every pixel individually. People can expect a higher picture resolution in their displays.
AMOLED stands for Active Matrix Organic Light Emitting Diode. AMOLED displays are completely different. They use an array of LEDs that help light up every pixel individually, so the only area of the display that is in use, only those pixels light up and the others stay shut. This helps provide a higher contrast to the image with very deep blacks. The display also helps in power consumption as every pixel draws power individually.
There is no actual winner to this debate, just like the console war or the Android vs Apple debate. The choice depends completely on the user and their tastes and preferences. If the users want a better picture resolution in their display, they can go with LTPS LCD and if the user wants a higher contrast picture to their display then they can go with AMOLED. Both displays deteriorate faster than standard LCD screens. Apple is known to use LCD panels in their smartphones and Samsung is known to use AMOLED ones. These are the points that can help the user make an informed decision about which display they would want to go with.
It can be argued that the display on your smartphone is its most important feature, as it is the principle way in which you interact with your device. A poor display means a poor user experience. As with all tech, it is easy to spot an under-performer, however the differences between a good display and a truly excellent display are harder to discern.
Roughly speaking there are two main types of displays used in smartphones: LCD and LED. These two base technologies have been refined and tweaked to give us AMOLED and IPS LCD. The former stands for Active Matrix Organic Light-Emitting Diode, while the latter means In-Plane Switching Liquid Crystal Display.
All of this hasn’t gone unnoticed by the marketing people, which means that plain old AMOLED or regular IPS LCD aren’t the terms used in the marketing fluff. Instead, we have Super AMOLED, Dynamic AMOLED, Super LCD, Super Retina OLED, Super Retina XDR, Infinity Display, and so on. But what’s any of that actually mean?
The LED part of AMOLED stands for Light Emitting Diode. It’s the same tech as you find on many home appliances that show that the power is on with a little red light. An LED display takes this concept, shrinks it down, and arranges the LEDs in red, green, and blue clusters to create an individual pixel.
The O in AMOLED stands for organic. It refers to a series of thin organic material films placed between two conductors in each LED. These produce light when a current is applied.
Finally, the AM part in AMOLED stands for Active Matrix, rather than a passive matrix technology. In a passive matrix, a complex grid system is used to control individual pixels, where integrated circuits control a charge sent down each column or row. But this is rather slow and can be imprecise. Active Matrix systems attach a thin film transistor (TFT) and capacitor to each sub-pixel (i.e. red, green, or blue) LED. The upshot is that when a row and column is activated, the capacitor at the pixel can retain its charge in between refresh cycles, allowing for faster and more precise control.
The image above is a close-up shot of the AMOLED display on the Samsung Galaxy S8. The RGB triangular pattern is clearly shown. Towards the bottom of the image, the green and red LEDs are off and the blue LEDs are on only slightly. This is why AMOLED displays have deep blacks and good contrast.
Super AMOLED is a marketing term from Samsung. It means a display that incorporates the capacitive touchscreen right in the display, instead of it being a separate layer on top of the display. This makes the display thinner.
Dynamic AMOLED is another marketing term from Samsung. It denotes Samsung’s next-generation AMOLED display which includes HDR10+ certification. According to Samsung, Dynamic AMOLED also reduces the harmful blue light emitted from the display, which helps reduce eye strain and helps lessen sleep disturbances if you’re using your phone late in the day!
As for Infinity Display (or Infinity-O Display), it is more marketing from Samsung. It means “a near bezel-less, full-frontal, edge-to-edge” display. However, it is still a Super AMOLED unit.
LCD displays work with a backlight that shines through some polarizing filters, a crystal matrix, and some color filters. Liquid crystals untwist when an electric charge is applied to them, which affects the frequency of the light that can pass through. Since the crystals can be twisted to varying degrees depending on the voltage used, a display can be built when they are used with polarized panels. A grid of integrated circuits is then used to control each pixel, by sending a charge down into a specific row or column. Colors are created by the use of red, green, and blue filters, known as sub-pixels, which are then blended by varying degrees to produce different colors.
The above image is of an LCD display from a Huawei Mate 8. Notice how the pixels are made up of equally-sized sub-pixels, one for each of the colors: red, green, and blue.
Like Super AMOLED, a Super LCD display also incorporates the touchscreen. There is no “air gap” between the outer glass and the display element, which means it has similar benefits to Super AMOLED.
Samsung isn’t the only company that is good at marketing, there is another! Apple has coined the term “Retina” for its displays. The term was first used for its smartphones with the launch of the iPhone 4, as it offered a significantly greater pixel density (over 300 ppi) when compared to the iPhone 3GS. Later came Retina HD, which applies to iPhones with at least a 720p screen resolution.
All Retina and Retina HD displays on the iPhone are LCD IPS displays. However, things have changed a bit with the iPhone X as it features an AMOLED display, now marketed under the term Super Retina. It’s still an AMOLED display. It just has extra adjectives. With the launch of the iPhone 11 Pro, Apple coined the term Super Retina XDR. The XDR part means Extended Dynamic Range, as they have better contrast ratios and higher peak brightness.
Not all Retina displays use OLED. Although the MacBook Pro is marketed with a “Retina” display, as you can see from the magnified image above, it is a regular LCD, even if it uses the latest Apple silicon.
Both technologies can be used to build displays with 720p, 1080p, Quad HD, and 4K resolutions. And OEMs have made handsets that support HDR10 using both LCD and AMOLED displays. So from that point of view, there isn’t much difference between the two.
When it comes to color, we know that the blacks will be deeper and the contrast ratios higher on AMOLED displays. But, overall color accuracy can be high on both types of display.
One of the main weaknesses of AMOLED displays is the possibility of “burn-in”. This is the name given to a problem where a display suffers from permanent discoloration across parts of the panel. This may take the form of a text or image outline, fading of colors, or other noticeable patches or patterns on the display. The display still works as normal, but there’s a noticeable ghost image or discoloration that persists. It occurs as a result of the different life spans between the red, green, and blue LED sub-pixels used in OLED panels.
Blue LEDs have significantly lower luminous efficiency than red or green pixels, which means that they need to be driven at a higher current. Higher currents cause the pixels to degrade faster. Therefore, an OLED display’s color doesn’t degrade evenly, so it will eventually lean towards a red/green tint (unless the blue sub-pixel is made larger, as you can see in the first image in this post). If one part of the panel spends a lot of time displaying a blue or white image, the blue pixels in this area will degrade faster than in other areas.
The theoretical lifespan of an AMOLED display is several years, even when used for 12 hours a day. However, there is anecdotal evidence that some displays suffer from burn-in quicker than others. Displays that show signs of burn-in after only a few months should be considered defective because they certainly aren’t normal.
Picking a winner can be hard as there are many factors to consider, not only about the display technologies but also about the other components in a handset. For example, if you are an AMOLED fan, then would you consider a device with large storage and a good processor, but with an LCD display? The same argument works the other way for LCD fans. Generally, you’ll be fine with either display type, so just pick the handset you like.
Higher-end devices typically sport AMOLED displays and mid-range/budget devices usually use LCD. But that isn’t set in concrete as there are plenty of high-end devices that have LCD displays. With OLED production costs dropping dramatically in recent years, more and more budget options will be offering OLED panels in the future.
What do you think? AMOLED or LCD? What about the terms like Retina vs Infinity Display? Are they meaningful to you? Please let me know in the comments below.
New Delhi: The technology used in mobile displays in the modern day smartphones has progressed significantly. In the era of touchscreen smartphones, the display technology has become one of its primary selling points, and certainly its most unique feature. Not only we want the touch screens to offer crisp text, vibrant images, blur-free video and enough brightness, we want them at low cost too.
For instance, HTC One uses Super LCD3 tech, in its 4.7in screen which gives a resolution of 1920 x 1080 pixels, with pixel density of 469 pixels per inch (ppi). This results in super display in terms of crispness and colour reproduction. HTC says the SLCD technology gives the phone better power management, improved viewing angles and is easier to produce.
The Thin film transistor liquid crystal display (TFT LCD) technology is the most common display technology used in mobile phones. A variant of liquid crystal display (LCD), the technology uses TFT technology to enhance image quality. It offers better image quality and higher resolutions as compared to earlier generation LCD displays.
IPS LCD Stands for In Plane Switching liquid Crystal Display. This technology offers better display quality as compared to the TFT-LCD display. The good part about IPS LCD is that it offers better viewing angles and consumes less power. Due to higher costs, it is found only on high-end smartphones. Apple uses a high resolution (640x960 pixels) version of IPS LCD in its iPhone 4, which is also called Retina Display.
Organic Light Emitting Diode (OLED) display technology is much better as compared to the LCD display technology because of its excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.
Since these display forms are easier to produce, they can be made to larger sizes. Because OLEDs are essentially plastics, they can be made into large, thin sheets.
AMOLED stands for Active Matrix Organic Light Emitting Diode. A step ahead of OLED screens, the AMOLED screens can control each pixel individuality while maintaining the properties of an OLED panel. AMOLED screens use a different subpixel arrangement which can reduce the image quality a bit.
AMOLED screens have all the attributes of an OLED display like excellent colour reproduction, faster response times, wider viewing angles, higher brightness and extremely light weight designs.
Super AMOLED display technology is an advanced version of AMOLED display. Samsung uses this term for the AMOLED panels that they develop. Super AMOLED screens are built with capacitive touch sensors on the display itself. Super AMOLED display is much more responsive than an AMOLED display. Samsung top-of-the-line Galaxy SII comes engineered with Super AMOLED display technology. Samsung has already took it"s SMOLED screen to next levels by developing Super AMOLED+, HD Super AMOLED+ and FHD Super AMOLED+ screens.
It is a name given by Apple to the high-resolution screen technology introduced on the iPhone 4 in June 2010. Something is a Retina Display when it offers a density of pixels above 163 pixels per inch. The company calls it the Retina display because its pixels cannot be individually identified by a human eye, thus rendering a super sharp display, more crisp text and more clear pictures.
Retina Display is designed to smooth the jagged edges of pixels are provide a higher-quality image than previously available on mobile devices. Apple claims that its resolution is so good that it makes it impossible for the human eye to distinguish individual pixels. Its effects shows up in text, images and videos.
Color boost is simply Moto"s marketing term for their new display. Although it now uses LCD displays, the company fine-tuned its panels to match the saturation of OLED displays while maintaining the higher performance of LCD. It"s somewhere in the middle ground.
AMOLED (active-matrix organic light-emitting diode, OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.
An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.
Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to provide a voltage source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for passive-matrix OLED operation.
TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays.
AMOLED was developed in 2006. Samsung SDI was one of the main investors in the technology, and many other display companies were also developing it. One of the earliest consumer electronics products with an AMOLED display was the BenQ-Siemens S88 mobile handsetiriver Clix 2 portable media player.Nokia N85 followed by the Samsung i7110 - both Nokia and Samsung Electronics were early adopters of this technology on their smartphones.
Manufacturers have developed in-cell touch panels, integrating the production of capacitive sensor arrays in the AMOLED module fabrication process. In-cell sensor AMOLED fabricators include AU Optronics and Samsung. Samsung has marketed its version of this technology as "Super AMOLED". Researchers at DuPont used computational fluid dynamics (CFD) software to optimize coating processes for a new solution-coated AMOLED display technology that is competitive in cost and performance with existing chemical vapor deposition (CVD) technology. Using custom modeling and analytic approaches, Samsung has developed short and long-range film-thickness control and uniformity that is commercially viable at large glass sizes.
The amount of power the display consumes varies significantly depending on the color and brightness shown. As an example, one old QVGA OLED display consumes 0.3 watts while showing white text on a black background, but more than 0.7 watts showing black text on a white background, while an LCD may consume only a constant 0.35 watts regardless of what is being shown on screen.
AMOLED displays may be difficult to view in direct sunlight compared with LCDs because of their reduced maximum brightness.Super AMOLED technology addresses this issue by reducing the size of gaps between layers of the screen.PenTile technology is often used for a higher resolution display while requiring fewer subpixels than needed otherwise, sometimes resulting in a display less sharp and more grainy than a non-PenTile display with the same resolution.
The organic materials used in AMOLED displays are very prone to degradation over a relatively short period of time, resulting in color shifts as one color fades faster than another, image persistence, or burn-in.
As of 2010, demand for AMOLED screens was high and, due to supply shortages of the Samsung-produced displays, certain models of HTC smartphones were changed to use next-generation LCD displays from the Samsung-Sony joint-venture SLCD in the future.
Flagship smartphones sold in 2020 and 2021 used either a Super AMOLED. Super AMOLED displays, such as the one on the Samsung Galaxy S21+ / S21 Ultra and Samsung Galaxy Note 20 Ultra have often been compared to IPS LCDs, found in phones such as the Xiaomi Mi 10T, Huawei Nova 5T, and Samsung Galaxy A20e.ABI Research, the AMOLED display found in the Motorola Moto X draws just 92 mA during bright conditions and 68 mA while dim.
"Super AMOLED" is a marketing term created by Samsung for an AMOLED display with an integrated touch screen digitizer: the layer that detects touch is integrated into the display, rather than overlaid on top of it and cannot be separated from the display itself. The display technology itself is not improved. According to Samsung, Super AMOLED reflects one-fifth as much sunlight as the first generation AMOLED.One Glass Solution (OGS).
Future displays exhibited from 2011 to 2013 by Samsung have shown flexible, 3D, transparent Super AMOLED Plus displays using very high resolutions and in varying sizes for phones. These unreleased prototypes use a polymer as a substrate removing the need for glass cover, a metal backing, and touch matrix, combining them into one integrated layer.
Also planned for the future are 3D stereoscopic displays that use eye-tracking (via stereoscopic front-facing cameras) to provide full resolution 3D visuals.
Kim, Yang Wan; Kwak, Won Kyu; Lee, Jae Yong; Choi, Wong Sik; Lee, Ki Yong; Kim, Sung Chul; Yoo, Eui Jin (2009). "40 Inch FHD AM-OLED Display with IR Drop Compensation Pixel Circuit". SID Symposium Digest of Technical Papers. 40: 85. doi:10.1889/1.3256930. S2CID 110871831.
Lee, Myung Ho; Seop, Song Myoung; Kim, Jong Soo; Hwang, Jung Ho; Shin, Hye Jin; Cho, Sang Kyun; Min, Kyoung Wook; Kwak, Won Kyu; Jung, Sun I; Kim, Chang Soo; Choi, Woong Sik; Kim, Sung Cheol; Yoo, Eu Jin (2009). "Development of 31-Inch Full-HD AMOLED TV Using LTPS-TFT and RGB FMM". SID Symposium Digest of Technical Papers. 40: 802. doi:10.1889/1.3256911. S2CID 110948118.
Hamer, John W.; Arnold, Andrew D.; Boroson, Michael L.; Itoh, Masahiro; Hatwar, Tukaram K.; Helber, Margaret J.; Miwa, Koichi; Levey, Charles I.; Long, Michael; Ludwicki, John E.; Scheirer, David C.; Spindler, Jeffrey P.; Van Slyke, Steven A. (2008). "System design for a wide-color-gamut TV-sized AMOLED display". Journal of the Society for Information Display. 16: 3. doi:10.1889/1.2835033. S2CID 62669850.
Lin, Chih-Lung; Chen, Yung-Chih (2007). "A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED". IEEE Electron Device Letters. 28 (2): 129. Bibcode:2007IEDL...28..129L. doi:10.1109/LED.2006.889523. S2CID 11194344.
Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O"Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C. (2003). "Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate (Proceedings Paper)". SPIE Proceedings. 5080: 180. doi:10.1117/12.497638. S2CID 12958469. "Archived copy" (PDF). Archived from the original (PDF) on 28 June 2011. Retrieved 2010-09-06.link)
Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, "Solution-Coating Technology for AMOLED Displays Archived 16 May 2011 at the Wayback Machine", Information Display Magazine, January 2011.
Dong, Mian; Choi, Yung-Seok Kevin; Zhong, Lin (2009). "Power modeling of graphical user interfaces on OLED displays". Proceedings of the 46th Annual Design Automation Conference on ZZZ - DAC "09. p. 652. doi:10.1145/1629911.1630084. ISBN 9781605584973. S2CID 442526.
"AMOLED vs LCD: differences explained". Android Authority. 8 February 2016. Archived from the original on 27 December 2016. Retrieved 6 February 2017.
Tim Carmody (10 November 2010). "How Super AMOLED displays work". Wired. Wired.com. Archived from the original on 28 September 2012. Retrieved 10 October 2012.
Ashtiani, Shahin J.; Reza Chaji, G.; Nathan, Arokia (2007). "AMOLED Pixel Circuit With Electronic Compensation of Luminance Degradation". Journal of Display Technology. 38 (1): 36. Bibcode:2007JDisT...3...36A. doi:10.1109/JDT.2006.890711. S2CID 44204246.
"AMOLED vs LCD: Which screen is best for your phone?". digitaltrends.com. 29 August 2014. Archived from the original on 29 March 2018. Retrieved 6 May 2018.
आजकल बाज़ार में कई प्रकार के डिस्प्ले मौजूद हैं, जिस वजह से कुछ लोग कन्फ्यूजन में होते है कि किस प्रकार का Display वाला स्मार्टफोन लेना चाहिए, इन Displays का उपयोग बहुत से प्रोडक्ट्स में किया जाता है जैसे कि कंप्यूटर, मोबाइल स्मार्ट वाच आदि आदि.
AMOLED, OLED का ही Advanced Version है जिसका फुल-फॉर्म है Active Matrix Organic Light Emitting Diode. दोनों एक ही Machenism पर काम करते हैं इन Dispalys में Backlight नहीं होती इसके हर Pixels में खुद का एक Transister लगा होता है जिसकी वजह से Display के जिन जगहों पर Colours की जरुरत होती, Pixels वहीं की Light को ON करते है,
AMOLED डिस्प्ले मे रंग वास्तविक तो नहीं मिलते लेकिन थोड़ा Vibrant और Over Saturated Colour रहता है जो हमारे इंसानी आंखो को अत्यधिक प्रिय लगते है. ये Display बहुत ही लचीली होती है अतः जल्दी टूटती नहीं और कभी टूट गयी तो बनवाना थोड़ा महंगा पड़ जाता है।
OLED डिस्प्ले उपर के 3 Displays से अच्छे रंग दिखाता है इस वजह से कुछ महंगा है, OLED Display थोडा पतला होने के साथ साथ इसका View Angle भी अच्छा होता है,
पिछले कुछ वर्षों तक सारे Display, LCD टेक्नोलॉजी पर काम करते थे लेकिन इसका Machenism थोड़ा अलग है OLED में आपको कोई भी Backlight नहीं मिलती है जिसके कारण हल्का ओर पतला मिल जाता है।
किसी भी प्रकार के Display में इन तीन चीज़ों का होना अति आवश्यक होता है पहला - डिस्प्ले को रोशनी देने के लिए एक लाईट जिससे Display को देखा जा सके, दूसरा - कलर्स,आपको डिस्प्ले में रंग दिखाइ देगी अगर रंग ही नहीं होंगे तो पूरा डिस्प्ले सफेद दिखेगा या काला, अतः डिस्प्ले में रंगों का होना बहुत जरूरी है.
Tft display (Thin Film Transister) होता है इसको LCD Display का नया वर्शन माना जाता है क्योंकि TFT डिस्प्ले दुसरे Displays के मुकाबले सस्ता मिलता है और इसकी मोटाई भी कुछ ज्यादा होने के वजह से मोबाईल के आकर में भी फर्क आ जाता है अतःइस डिस्प्ले का इस्तेमाल पहले के Smartphones और आजकल के सस्ते Mobiles में किया जाता है,
चूंकि यह डिस्प्ले थोडा सस्ते में मिल जाता है अतः इसमें कुछ खामियां भी है रंगों और क्वालिटी के हिसाब से, अगर जब कभी आप नया फ़ोन लेने जाएँ तो ये सुनिश्चित कर लें कि मोबाइल tft डिस्प्ले वाला ना हो, क्योकि इसमें आपको थोड़ा फीका और विडियो का अनुभव ठीक से नहीं ले पाएंगे, साथ ही ये डिस्प्ले जल्दी टूट जाता है।
आईपीएस एलसीडी ये एलसीडी का ही एक रूप है इसमें भी वही टेक्नोलॉजी काम करती है जो एलसीडी डिस्प्ले में करती थी, यह डिस्प्ले आज के इस दौर में Trend में है क्योंकि ये AMOLED display के मुकाबले सस्ते और रंगों को बहुत Natural दिखाते है,
जबकि AMOLED डिस्प्ले मे Colours ज्यादा बूस्टेड और Over Saturated रहता है अगर आप भी अपने मोबाइल में एक्यूरेट कलर्स देखना चाहते है तो आपको IPS LCD Display के साथ ही जाइये.
इस Display में भी एक Backlight होता है जिसके कारण सूर्य की तेज किरणों में भी इस Display को बिना किसी दिक्कत के क्लियर देख पाएंगे, और View Angle को बढ़ाया गया है अर्थात आप जब Smartphone को कुछ Tilt भी करते है तो ठीक से देख पायेंगे,
यह Display भी AMOLED के मुकाबले सस्ती ओर TFT Display से महंगा मिल जाता है और AMOLED से कुछ कम ओर TFT से थोड़ा मोटा रहता है जिसके कारण Smartphones भी थोड़े भारी हो जाते है.
बहुत से डिस्प्ले के बारे में जानने के बाद भी बहुत से लोग इसी Confusion में होंगे कि कौन सी Types of mobile display screen वाला मोबाइल लें, अगर आपके दिमाग में ये सवाल है तो फ़िक्र मत कीजिये हम आपको आपके Use के According सही डिस्प्ले की जानकारी देंगे,
अगर 3000-4000Rs.के अंदरथोड़े सस्ते मोबाइल चाहिए तो आप tft डिस्प्ले ही लें क्योंकि इस Price में किसी और Display का विकल्प ही नहीं है इसमें भी आपको अच्छा Experince मिलेगा,आपकी Budget 10K से उपर है तो आप IPS LCD का चुनाव करें क्योंकि इस कीमत में आपको AMOLED Display मुश्किल से ही मिल पाता है.
25K के उपर का बजट होगा तो AMOLED, Super AMOLED और Retina Display वाला Smartphone ले सकते है क्योंकि ये सभी Battery की खपत को कम करता है और Vibrant Colour दिखाता है जो इंसानी आंखो को अत्यधिक प्रिय लगते है ये सभी Display आंखो के लिए भी सेहतमंद होते है।
अब बारी आती है Display को सुरक्षित रखने की, एक अच्छी डिस्प्ले स्क्रीन वाला फोन ही काफी नहीं है हमें यह भी देख लेना चाहिए कि फोन में कौन सा Protector Glass लगा है, Market में आपको बहुत सारे Glass मिल जाएंगे लेकिन आज हम सिर्फ Gorilla GlassProtector ग्लास के बारे में जानकारी देंगे जो काफी कठोर ओर सबसे ज्यादा यूज़ किया जाता है.
इसका यूज़ सबसे पहले 2007 में iPhone में किया गया था, Gorilla Glass बनाने वाली Company Corning यहकभीनहीं बोलती की हमारे Glass में Scratch नहीं पड़ेगा ये जोग्लासहै वो काफी हद तक आपके Display में Scratch आने से बचाती है लेकिन एक भी Scratch ना आए ऐसा Possible नहीं है,
हमें उम्मीद है की आपको इस लेख Mobile Display Types - IPS, Retina, and AMOLED in Hindiसे काफी उपयोगी जानकारी मिली होगी. आपको हमारा यह लेख कैसा लगा हमें Comment में जरुर बताएं, साथ ही अगर लेख पसंद आया हो तो इसे Social साइट्स और दोस्तों के साथ Share करना ना भूलें
This rise of small, powerful components has also led to significant developments in display technology. The most recent of which, AMOLED, is now the main competitor for the most common display used in quality portable electronics – the TFT–LCD IPS (In-Plane Switching) display. As more factories in the Far East begin to produce AMOLED technology, it seems likely we will enter a battle of TFT IPS versus AMOLED, or LCD vs LED. Where a large percentage of a product’s cost is the display technology it uses, which provides best value for money when you’re designing a new product?
TFT IPSdisplays improved on previous TFT LCD technology, developed to overcome limitations and improve contrast, viewing angles, sunlight readability and response times. Viewing angles were originally very limited – so in-plane switching panels were introduced to improve them.
Modern TFT screens can have custom backlights turned up to whatever brightness that their power limit allows, which means they have no maximum brightness limitation. TFT IPS panels also have the option for OCA bonding, which uses a special adhesive to bond a touchscreen or glass coverlens to the TFT. This improves sunlight readability by preventing light from bouncing around between the layers of the display, and also improves durability without adding excess bulk; some TFT IPS displays now only measure around 2 mm thick.
AMOLED technology is an upgrade to older OLED technology. It uses organic compounds that emit light when exposed to electricity. This means no backlight, which in turn means less power consumption and a reduction in size. AMOLED screens tend to be thinner than TFT equivalents, often produced to be as thin as 1 mm. AMOLED technology also offers greater viewing angles thanks to deeper blacks. Colours tend to be greater, but visibility in daylight is lower than IPS displays.
As manufacturers increasingly focus on smaller devices, such as portable smartphones and wearable technology, the thinness and high colour resolution of AMOLED screens have grown desirable. However, producing AMOLED displays is far more costly as fewer factories offer the technology at a consistent quality and minimum order quantities are high; what capacity there is is often taken up the mobile phone market Full HD TFT IPS displays have the advantage of being offered in industry standard sizes and at a far lower cost, as well as offering superior sunlight visibility.
The competition between displays has benefitted both technologies as it has resulted in improvements in both. For example, Super AMOLED, a marketing brand by Samsung, involves the integration of a touchscreen layer inside the screen, rather than overlaid on it. The backlight in TFT technology means they can never truly replicate the deep blacks in AMOLED, but improvements have been made in resolution to the point where manufacturers like Apple have been happy to use LCD screens in their smartphones, even as they compete with Samsung’s Super AMOLED.
Aside from smartphones, many technologies utilise displays to offer direct interaction with customers. To decide whether TFT LCD will survive the rise of AMOLED technology, we must first recap the advantages of LCD. The backlit quality means that whites are bright and contrast is good, but this will wear down a battery faster than AMOLED. Additionally, cost is a significant factor for LCD screens. They are cheaper, more freely available and are offered in industry standard sizes so can be ordered for new products without difficulty.
It seems hard to deny that AMOLED will someday become the standard for mobile phones, which demand great colour performance and are reliant on battery life. Where size is an issue, AMOLED will also grow to dominance thanks to its superior thinness. But for all other technologies, particularly in industrial applications, TFT-LCD offers bright, affordable display technology that is continually improving as the challenge from AMOLED rises.
There are many different mobile display types and touchscreens available across the range of smartphones and it is important that we know about them before buying one. Over the last, one-year smartphones with large smartphone displays and touchscreens have really become popular. In this post, we explain different types of displays and touchscreens and their pros and cons.
TFT stands for Thin Film Transistor technology. TFT LCDs are the most common type of display unit used across mobile phones. TFT LCD offers better image quality and higher resolutions compared to earlier generation LCD displays but their limitation lies in narrow viewing angles and poor visibility in direct light or sunlight. Jio Phone and Jio Phone 2 feature a TFT screen.
Large TFT displays consume more power and hence are not battery friendly. But since these are cheaper to manufacture they are found on budget phones, feature phones, and lower-end smartphones.
IPS stands for In-Place Switching. If you compare TFT vs IPS, then IPS LCDs are superior to normal TFT LCD displays with wider viewing angles and lower power consumption which leads to much-improved battery life. IPS-LCDs are costlier than normal TFT LCD and hence are found only on higher-end smartphones. A higher resolution (640 x 960 pixels) version of the IPS LCD is used in Apple iPhone 4 and is called Retina Display because of its brilliant picture quality.
Touchscreen LCD displays are of two types – Resistive and Capacitive. Resistive touchscreens contain two-layer of conductive material with a very small gap between them which acts as a resistance. When the resistive touchscreen is touched with a finger (or stylus) the two layers meet at the point of touch thus making a circuit at the point of touch. This information is recognized by the mobile’s processor/chip and passed on to the mobile’s OS thereby triggering an event/action at the point of touch.
OLED stands for Organic Light Emitting Diode and is a newer technology for the type of displays of mobiles and monitors. In OLED technology a layer of organic material (carbon-based) is sandwiched between two conducting sheets (an anode and a cathode), which in turn are sandwiched between a glass top plate (seal) and a glass-bottom plate (substrate). When the electric pulse is applied to the two conducting sheets, electro-luminescent light is produced directly from the organic material sandwiched between. Brightness and color can v